
Analysis of high-throughput short reads using R

and BioConductor

Patrick Aboyuon & Martin Morgan
Fred Hutchinson Cancer Research Center

Seattle, WA 98008

4 September, 2008

Contents

1 Introduction 1
1.1 Exercises . 2

2 I/O and quality assessment of aligned reads 4
2.1 Input . 4
2.2 Preliminary data exploration . 5
2.3 Quality assessment . 7
2.4 Exercises . 8

3 Examining short reads 10
3.1 Summarizing nucleotide frequencies 11
3.2 ‘Cleaning’ reads . 14
3.3 Exercises . 15

4 Pattern matching / Pairwise alignment 18
4.1 Biostrings matching / alignment methodologies 18
4.2 Matching against a short genome 19
4.3 Matching against a large genome 28

5 Advanced topics 33

6 Resources 33

1 Introduction

Short read technologies

� 100’s of thousands to 10’s of millions of short (100’s to 10’s of nucleotides)
DNA sequences.

1

� Examples: Solexa (Illumina), 454 (Roche), SOLiD (Applied Biosystems),
Helicos.

� More detail: Solexa

– Biological preparation: e.g., enrichment, ChIP, . . .

– Sample processing: fragment (‘random’); attach adapters, PCR primers;
add to flow cell; amplify; sequence

Vendor and third-party analysis:

� Image interpretation; base calls; short read alignment / assembly / SNP
discovery / . . .

� Examples: ELAND (Solexa alignment); MAQ

R and BioConductor

� R: interactive, extensible statistical programming language.

� BioConductor: collection of R packages for analysis of high-throughput
(microarray, flow cytometry, short read, and other) technologies.

� Especially suited for research, development, and popularization of new
methods.

Use cases for short reads in R and BioConductor

� Input, exploration, and data management of aligned or raw sequences.

� Alignment, especially to understand statistical aspects of the data or to
address unique research questions.

� Advanced tool development.

� Caveat: BioConductor tools do not currently implement one-click work
flows.

1.1 Exercises
Exercise 1
Copy the OS-specific folder hierarchy from the memory stick to a convenient
location on your computer. The following assumes that you copied the hierarchy
to a folder named MGED-2008 (it avoids confusion in R to use / for the file path
separator on Windows).

Exercise 2
Install R.

1. Windows and Mac: double click on the installer and follow directions.

2. Linux: consult with tutorial assistants.

2

Exercise 3
Check installation / a first R session.

1. Start R (e.g., double-click on the appropriate icon, or select from the ‘start’
menu.

2. Enter the text that appears after the > and confirm that you are using R
version 2.8.0 Under development (unstable) :

> sessionInfo()

R version 2.8.0 Under development (unstable) (2008-08-22 r46416)

i686-pc-linux-gnu

locale:

LC_CTYPE=C;LC_NUMERIC=C;LC_TIME=C;LC_COLLATE=C;LC_MONETARY=C;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets

[6] methods base

3. Find help about a function, e.g., plot with the command

> ?plot

4. Load a special purpose library (in this case, for more advanced plotting)

> library(lattice)

End the R session (select n when prompted to save the session).

> q()

Exercise 4
Install essential BioConductor packages (all OS).

1. Start a new R session (e.g., by double clicking on the appropriate icon or
selecting from the ‘start’ menu)

2. Evaluate the following command, replacing your operating system and file
path as appropriate:

> install.packages(c("ShortRead", "BSgenome.Mmusculus.UCSC.mm9"),

+ repos="file:///home/mtmorgan/MGED-2008/Linux/repos")

On Windows, specify repos as, for instance file:///c:/MGED-2008/Windows/repos.

3. Note: the usual way to install packages is from the internet, following
instructions at http://bioconductor.org/install .

Verify the installation by trying to load one of the installed packages, e.g.,

3

http://bioconductor.org/install

> library(ShortRead)

Exercise 5
Further activities.

1. BioConductor packages have vignettes that provide an integrated narrative
of how the package is used. Use openVignette() to explore the Overview

vignette in the ShortRead package. If the vignette is not available on your
computer, see the next instruction.

2. The BioConductor web site summarizes available packages. Visit http://
bioconductor.org/packages/devel/Software.html to discover soft-
ware available for the development version of R. Can you find the Short-
Read package and its vignette on the web?

2 I/O and quality assessment of aligned reads

In this section we read in and assess the quality of sequences produced and
aligned by ELAND. We’ll address the following general questions:

� What information can we easily import and access in R?

� Can we assess the quality of the experiment?

2.1 Input

Load the ShortRead package.

> library(ShortRead)

Create a reference to the data on disk

> sp <- SolexaPath("MGED-2008/extdata/Solexa")

> sp

class: SolexaPath
experimentPath: MGED-2008/extdata/Solexa
dataPath: Data
scanPath: NA
imageAnalysisPath: C1-35Firecrest
baseCallPath: Bustard
analysisPath: GERALD

Read the aligned data in to R

> aln <- readAligned(sp, pattern="s_1_export.txt")

Other input methods are available, for other Solexa files and for non-Solexa
technologies, e.g., readFastq, readXStringColumns.

4

http://bioconductor.org/packages/devel/Software.html
http://bioconductor.org/packages/devel/Software.html

2.2 Preliminary data exploration

Here is a summary of the data we have read in:

> aln

class: AlignedRead
length: 100000 reads; width: 35 cycles
chromosome: chrUn_random.fa chr1.fa ... 255:255:255 NM
position: 5251632 163068613 ... NA NA
strand: F R ...
alignQuality: NumericQuality
alignData varLabels: run lane ... y filtering

Reads are accessed with sread.

> sread(aln)

A DNAStringSet instance of length 100000
width seq

[1] 35 TTTCAGTTTTCTCGCCTTATTCCATGTCCTACAGT
[2] 35 TAGACTGCTGCCTAGCAAGCCTTAAGGATTCTTCT
[3] 35 TGCAAGAAGTGGAATACAAAACAAAGGCTTAGAAT
[4] 35 AAAATGAGAAACATCCACTTGACTCCTTGAAAAAT
[5] 35 TGGGCTGACGTCATGCCTGAGCTGTCACGAGCAGA
[6] 35 GCGAGGAAAACTGAAAAAGGTGGAAAATTTAGAAA
[7] 35 GATGAACAAGAGTTTACCAAAAGGTCAAAATGAAA
[8] 35 GAAAAATGAGAAATGCACACTGTAGGACCTGGAAT
[9] 35 GTTTTAGGAACTCTCCTTATAGAAGAAACAACTCG
...

[99992] 35 AAAATCACTCACAACCGTGAACAATGAGACATGCC
[99993] 35 ACATACCCCCCCAACTCCACCCTACCTAACACCTC
[99994] 35 TAACTCAGCCAGCCACAAAGAGAAACAACCAAACC
[99995] 35 CATGTCGCCCCCTTCTAATGGTCCTCAGCCAGGTG
[99996] 35 CTGAATACCACCTGTCTCTAGCTCACAGCACACTG
[99997] 35 CCTCTCTCCAAAATACCATCACACTCCCCCCCCAC
[99998] 35 AAAAAAAAAACTTCCTCTTCCCCATTTCTTTCTTT
[99999] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
[100000] 35 AAATCAACATAACACATATATCCTCCACCACATCA

‘Quality’ scores (base call confidence, defined in vendor-specific ways) are ac-
cessed with quality

> quality(aln)

quality measures for Solexa are typically reported as modified ‘fastq’ scores,
where each base is assigned an ASCII symbol representing its quality. Higher-
valued ASCII characters (e.g., later in the alphabet) correspond to bases with
higher quality.

5

> sqchars <- SolexaQuality("ABCDEFGHIJKLMNOPQRSTUVWXYZ[")

> sqchars

A SolexaQuality instance of length 1
width seq

[1] 27 ABCDEFGHIJKLMNOPQRSTUVWXYZ[

> ## associated numeric equivalents

> as.integer(sqchars)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27

> ## associated miscall error probabilities

> round(as.numeric(sqchars), 4)

[1] 0.4427 0.3869 0.3339 0.2847 0.2403 0.2008 0.1663 0.1368
[9] 0.1118 0.0909 0.0736 0.0594 0.0477 0.0383 0.0307 0.0245
[17] 0.0196 0.0156 0.0124 0.0099 0.0079 0.0063 0.0050 0.0040
[25] 0.0032 0.0025 0.0020

We can summarize essential alignment information by accessing data and
applying standard R functions. For instance, alignments to forward and reverse
strands are tabulated with

> table(strand(aln))

F R
50705 24661 24634

about 1/2 the reads were not aligned (the first column of numbers); a result
often seen is that more reads align to the forward than to the reverse strand.

Vendor-specific information on alignments is stored in a data frame-like
structure that can be displayed with

> alignData(aln)

An object of class "AlignedDataFrame"
readName: 1, 2, ..., 100000 (100000 total)
varLabels and varMetadata description:
run: Analysis pipeline run
lane: Flow cell lane
...: ...
filtering: Read successfully passed filtering?
(6 total)

> head(pData(alignData(aln)))

6

run lane tile x y filtering
1 1 1 1 98 349 Y
2 1 1 1 83 277 Y
3 1 1 1 72 446 N
4 1 1 1 123 436 Y
5 1 1 1 114 969 Y
6 1 1 1 343 187 Y

pData(alignData(aln)) extracts the vendor-specific alignment data. head is
an R function to display the first few lines of the data. ELAND provides in-
formation on the software run number, the lane, tile, x, and y coordinates of
each read, and whether the read survivived ELAND-specific filtering criteria (the
ELAND filtering criteria are described in the ELAND manual; default filtering is
based on aspects of quality of the initial 12 bses).

Objects can be subset to contain only specific reads. For instance,

> filterOk <- alignData(aln)[["filtering"]] == "Y"

creates a logical vector with value TRUE when the read passed ELAND filtering,
and FALSE otherwise. Create a new set of aligned reads containing just those
reads passing filtering with

> aln1 <- aln[filterOk]

> aln1

class: AlignedRead
length: 59975 reads; width: 35 cycles
chromosome: chrUn_random.fa chr1.fa ... NM 255:255:255
position: 5251632 163068613 ... NA NA
strand: F R ...
alignQuality: NumericQuality
alignData varLabels: run lane ... y filtering

Many other possibilities for subsetting data are possible.

2.3 Quality assessment

ShortRead provides quality assessment for Solexa (currently) and other (planned)
technologies. The assessment is meant to supplement, rather than replicate,
quality assessment measures provided by the vendor or other software. The fol-
lowing commands perform quality assessment and generate a pdf-style report;
the commands require too much data for this tutorial, so cannot be executed
directly.

> qa <- qa(sp) # perform QA

> rpt <- report(qa) # format a report

The result of these commands is a PDF document summarizing the runs (HTML-
based reports are planned). A sample is included at MGED-2008/doc/qa_-
080623_080728.pdf; the qa object can be read in with the command

7

> load("MGED-2008/data/qa_080623_080706.rda")

Some features of the report, which is more-or-less typical of the runs seen in our
new sequencing facility, include:

� Lanes produced between 5.5 and 7.7 million reads; less than 1/2 of the
reads aligned to the reference genome.

� About 5% of nucleotides were called N, i.e., uncertain; A and C nucleotides
were generally called more frequently than G and T. The importance of
this needs to be assessed in relation to the reference genome (mouse, in
this case) and resequencing target.

� Some reads were present at very high frequency. These correspond to
adapter sequences (likely an artifact of sample preparation) or other obvi-
ously anomalous reads (e.g., all-A). Conversely, some reads were encoun-
tered only one or a couple of times, these likely represent sequencing errors.

� Nucleotide frequencies were not constant across cycles, e.g., the C nu-
cleotide was more common at the end than at the beginning of the read.
This likely represents a technological limitation, perhaps related to low
signal intensity.

� Read count and quality exhibit spatial effects in each lane; per tile read
quality is inversely related to read count. A few tiles failed completely.

2.4 Exercises

Perform the following, using the commands sketched above as a guide. Solutions
appear in blue, below.

Exercise 6
Use SolexaPath to assign a value to an R object sp that is a reference to the
portion of the Solexa file hierarchy distributed with the tutorial (use MGED-

2008/extdata/Solexa as the experimentPath).
Use the help page ?SolexaPath and the hints suggested by the display of

sp to determine the analysisPath, i.e., the location in the file hierarchy where
the results of ELAND analysis are located.

Use baseCallPath and list.files (consulting its help page, if necessary)
to list all files in the base call directory. List only files matching the pattern
_seq.txt; these files contain the lane, tile, x, and y coordinates, and base
sequence of each read.

> sp <- SolexaPath("MGED-2008/extdata/Solexa")

> analysisPath(sp)

[1] "MGED-2008/extdata/Solexa/Data/C1-35Firecrest/Bustard/GERALD"

8

> list.files(baseCallPath(sp), "_seq.txt")

[1] "s_1_0001_seq.txt" "s_5_0001_seq.txt"

Exercise 7
Use readAligned, including its pattern argument, to input the reads of lane
1. Extract the reads from the result of readAligned using sread.

Aligned reads are assigned a numeric quality score. The quality score de-
pends on the algorithm used, and in this case the Solexa ELAND documen-
tation should be consulted for precise definition. For our purposes, we’ll say
that ELAND reports the ‘best’ alignment with up to two mismatches, of each
read against a reference genome. The quality of the alignment is reported as a
numeric value, with high scores corresponding to better alignment. Use align-

Quality and quality to extract the quality of each alignment. Plot the read
quality with hist, and with densityplot (hint: densityplot is in the lattice
pacakge; consult the help pages for insight into how to invoke these functions).
Should all alignments be considered equally good?

> aln <- readAligned(sp, "s_1_export.txt$")

> sread(aln)

A DNAStringSet instance of length 100000
width seq

[1] 35 TTTCAGTTTTCTCGCCTTATTCCATGTCCTACAGT
[2] 35 TAGACTGCTGCCTAGCAAGCCTTAAGGATTCTTCT
[3] 35 TGCAAGAAGTGGAATACAAAACAAAGGCTTAGAAT
[4] 35 AAAATGAGAAACATCCACTTGACTCCTTGAAAAAT
[5] 35 TGGGCTGACGTCATGCCTGAGCTGTCACGAGCAGA
[6] 35 GCGAGGAAAACTGAAAAAGGTGGAAAATTTAGAAA
[7] 35 GATGAACAAGAGTTTACCAAAAGGTCAAAATGAAA
[8] 35 GAAAAATGAGAAATGCACACTGTAGGACCTGGAAT
[9] 35 GTTTTAGGAACTCTCCTTATAGAAGAAACAACTCG
...

[99992] 35 AAAATCACTCACAACCGTGAACAATGAGACATGCC
[99993] 35 ACATACCCCCCCAACTCCACCCTACCTAACACCTC
[99994] 35 TAACTCAGCCAGCCACAAAGAGAAACAACCAAACC
[99995] 35 CATGTCGCCCCCTTCTAATGGTCCTCAGCCAGGTG
[99996] 35 CTGAATACCACCTGTCTCTAGCTCACAGCACACTG
[99997] 35 CCTCTCTCCAAAATACCATCACACTCCCCCCCCAC
[99998] 35 AAAAAAAAAACTTCCTCTTCCCCATTTCTTTCTTT
[99999] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
[100000] 35 AAATCAACATAACACATATATCCTCCACCACATCA

> qscores <- quality(alignQuality(aln))

> head(qscores)

9

[1] 3 43 37 2 73 NA

> ## hist(qscores)

> library(lattice)

> densityplot(qscores, plot.points=FALSE)

quality(alignQuality(aln))

D
en

si
ty

0.00

0.01

0.02

0.03

0 20 40 60 80

Exercise 8
Review the qa report, MGED-2008/doc/qa_080623_080728.pdf. Can you find
support for each of the statements in section 2.3? Are there features of the data
that are surprising, or worth further investigation?

3 Examining short reads

This section will delve a little more deeply into working with short reads. We’ll
explore:

� Summarizing nucleotide frequencies

� Removing anomalous reads prior to subsequent analysis.

10

3.1 Summarizing nucleotide frequencies

ShortRead and Biostrings have a number of useful functions for summarizing
sequences. alphabetFrequency summarizes nucleotide use, either over all reads
or on a per-read basis

> alphabetFrequency(sread(aln), collapse=TRUE) # over all reads

A C G T M R W S
882973 916323 774732 865105 0 0 0 0

Y K V H D B N -
0 0 0 0 0 0 60867 0
+
0

> alf <- alphabetFrequency(sread(aln)) # each read

> head(alf)

A C G T M R W S Y K V H D B N - +
[1,] 5 10 4 16 0 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 8 9 7 11 0 0 0 0 0 0 0 0 0 0 0 0 0
[3,] 17 4 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0
[4,] 16 7 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0
[5,] 7 9 12 7 0 0 0 0 0 0 0 0 0 0 0 0 0
[6,] 18 2 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0

alphabetByCycle summarizes alphabet use (i.e., nucleotides) by cycle

> abc <- alphabetByCycle(sread(aln))

> abc[,1:2] # cycles 1:2

cycle
alphabet [,1] [,2]

A 28604 32010
C 23404 20881
G 27126 21717
T 20593 23167
M 0 0
R 0 0
W 0 0
S 0 0
Y 0 0
K 0 0
V 0 0
H 0 0
D 0 0
B 0 0
N 273 2225
- 0 0
+ 0 0

11

> abc[,34:35] # cycles 34:35

cycle
alphabet [,1] [,2]

A 24200 26353
C 26595 26286
G 21539 19975
T 26416 26261
M 0 0
R 0 0
W 0 0
S 0 0
Y 0 0
K 0 0
V 0 0
H 0 0
D 0 0
B 0 0
N 1250 1125
- 0 0
+ 0 0

The tables function provides two summaries of common reads.

> tbls <- tables(aln)

> ## most prevalent

> head(tbls[["top"]], 3)

GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA
649

GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA
472

ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
381

> ## times a read occurs

> head(tbls[["distribution"]], 4) # e.g., 95721 singleton reads

nOccurrences nReads
1 1 95721
2 2 337
3 3 85
4 4 39

> tail(tbls[["distribution"]], 4) # e.g., 1 read represented 649 times

nOccurrences nReads
33 378 1

12

34 381 1
35 472 1
36 649 1

One way of visualizing the distribution of reads is in a plot of the number of
reads that are rpresented once, twice, and so on (I call these ‘hoover’ plots, after
the English term for what North Americans refer to as a vacuum cleaner):

> print(xyplot(log10(nReads) ~ log10(nOccurrences),

+ tbls[["distribution"]],

+ ylab="Number of reads (log 10 scale)",

+ xlab="Occurence in sample (log 10 scale)"))

Occurence in sample (log 10 scale)

N
um

be
r

of
 r

ea
ds

 (
lo

g
10

 s
ca

le
)

0

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●● ● ●●●●●● ●●● ●●● ● ● ●● ● ●

These plots are
quite informative. If reads represent a highly replicated uniform random sample
of a region of DNA, then read counts would follow a binomial distribution cen-
tered around the average coverage. Instead, the distribution in the ’head’ of the
hoover is much broader than binomial expectation, suggesting that additional
sequence features (e.g., local GC content) influence how often a particular read
is represented. The linear ‘handle’ (sometimes distinctly concave) suggests a
scale-free process to describe sequencing error.

13

3.2 ‘Cleaning’ reads

Reads will often need to be ‘cleaned’ in a variety of ways, especially to remove
experiment-specific artifacts produced during sample preparation or amplifica-
tion. We can easily remove reads with uncalled bases (which can cause subtle
ambiguity in alignment algorithms, for instance)

> length(aln)

[1] 100000

> clean <- aln[alf[,"N"] == 0]

> length(clean)

[1] 96818

In our sample, a particular sequence (likely a Solexa adapter) is represented
by many copies. We can find reads ’near’ (in terms of edit distance) to this
sequence, and remove suspect reads.

> subj <- "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA"

> dist <- srdistance(sread(clean), subj)[[1]]

> histogram(dist, xlab=paste("Distance from", subj))

Distance from GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAA

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

0 10 20 30

We can use facilities in R to discover features of these reads. For instance,
were the reads that were ‘close’ to the adapater filtered by ELAND?

14

> table(dist < 5, alignData(clean)[["filtering"]])

N Y
FALSE 36479 57892
TRUE 386 2061

Finally, we can ask whether we can spot any remaining problems (it looks like
there are other problems!)

> cleaner <- clean[dist > 5]

> head(tables(cleaner)[["top"]], 3)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
378

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATC
32

GTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAG
13

A different strategy, especially if uncertainty about biased PCR is a concern,
is to select only a single copy of each read

> uclean <- clean[!srduplicated(sread(clean))]

> length(uclean)

[1] 93861

Functions related to sorting include srsort, srrank, and srorder.

3.3 Exercises

This set of exercises will use some of the tools suggested above to look at how
nucleotied frequency and base quality change across reads.

Exercise 9
Use SolexaPath to make an R object sp referencing the demo Solexa file hier-
arch. Use this to read in the sample of aligned data from lane 1.

> ## use SolexaPath and readAligned

> sp <- SolexaPath("MGED-2008/extdata/Solexa")

> aln <- readAligned(sp, "s_1_export.txt")

Exercise 10
Summarize alphabet frequency over all reads, and per cycle. Assign the per
cycle value to an R object abc. Use the R functions head, class, length, and
dim (for abc) to explore the object you have created.

15

> alf <- alphabetFrequency(sread(aln), collapse=TRUE)

> class(alf)

[1] "integer"

> length(alf)

[1] 17

> abc <- alphabetByCycle(sread(aln))

> class(abc)

[1] "matrix"

> dim(abc)

[1] 17 35

Exercise 11
Extract the quality scores from the aligned reads, using the R function quality.
Convert the quality scores into a matrix of numeric values, and keep only cycles
1 through 30. Do this using

> Q <- as(quality(aln), "matrix")[,1:30]

Explore the properties of Q with class, dim, and head. Can you determine
what the dimensions of Q correspond to?

According to Solexa documentation, average quality scores Q can be trans-
formed to miscall error probabilities with the R expression

> Q <- 1 - 1 / (1 + 10^(-Q / 10))

Evaluate this expression to transform the matrix of quality scores into a matrix
of miscall probabilities.

Now use the function colMeans to calculate the average quality at each cycle.
If you get stuck, take a look at the solution below.

Use the function seq_along to create an R vector cycle containing the
cycles, and the function xyplot to display the results as a simple graph. How
does quality change with cycle?

Note: Features in this plot reveal a variety of artifacts from the ELAND
implementation, in addition to decisions about algorithm parameters made in
generating this data.

> Q <- as(quality(aln), "matrix")[,1:30]

> Q <- 1 - 1 / (1 + 10^(-Q / 10))

> qByCycle <- colMeans(Q)

> cycle <- seq_along(qByCycle)

> xyplot(qByCycle ~ cycle,

+ ylab="Average miscall error probability", xlab="Cycle")

16

Cycle

A
ve

ra
ge

 m
is

ca
ll

er
ro

r
pr

ob
ab

ili
ty

0.020

0.025

0.030

0.035

0.040

0.045

0 5 10 15 20 25 30

●

●
●

●
● ●

●

● ● ●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

Exercise 12
As an advanced exercise, can you plot changes in nucleotide frequency along
cycles of a read? The steps might involve:

1. Use alphabetByCycle to calculate nucleotide counts per cycle.

2. ‘Flatten’ the matrix into a data frame, with columns Nucleotide, Cycle,

Count. The reason for creating a data frame like this is to ease use of the
xyplot function, which expects data frames.

3. Use xyplot, including its group, auto.key and type arguments to plot
the different Count as a function of Cycle, with points in the plot grouped
by Nucleotide.

> abc <- alphabetByCycle(sread(aln))[1:4,] # just nucs A, C, T, G

> df <- data.frame(Nucleotide=rownames(abc)[row(abc)],

+ Cycle=as.vector(col(abc)),

+ Count=as.vector(abc))

> print(xyplot(Count ~ Cycle, df, group=Nucleotide,

+ type="l",

+ auto.key=list(lines=TRUE, points=FALSE)))

17

Cycle

C
ou

nt

20000

25000

30000

0 10 20 30

A
C
G
T

4 Pattern matching / Pairwise alignment

In this section we will discuss the two types of pattern matching / pairwise align-
ment methodologies within the Biostrings package. We’ll address the following
general questions:

� How do the two different methodologies complement each other?

� Why does Biostrings contain yet another implementation of pattern match-
ing / pairwise alignment?

4.1 Biostrings matching / alignment methodologies

Just like Solexa’s support of ELAND and PhageAlign, Biostrings contains two
different string matching implementations:

Exact and fuzzy string matching: The matchPDict family of functions allows
the user to find all of the occurances of a set of patterns, with zero or a
limited number of mismatches, within a target string.

Optimal pairwise alignment: The pairwiseAlignment function allows the
user to fit three primary (global, local, overlap) and two derivative (subject
overlap, pattern overlap) pairwise alignment types.

18

matchPDict pairwiseAlignment
Utilizes a fast string matching Not practical for long strings.
algorithm.
Finds all occurrances with the with Returns only the first occurrance
up to the specified # of mismatches. of the best scoring alignment.
Supports removal of repeat masked Cannot handle masked genomes.
regions.
Produces limited output: Allows various summaries of
of times a pattern matches and alignments.
where they occur.
Does not support insertions or Does support insertions and
deletions. deletions.
Supports a limited number of Provides a flexible alignment
matching options. framework, including quality-based

scoring.

Table 1: Comparisons of string matching/alignment methods.

For an overview of the these two functions, read the man pages by typing
help(matchPDict) or help(pairwiseAlignment) at the R command line.

4.2 Matching against a short genome

High-throughput sequencing technologies like Solexa recommend using some
sequencing cycles for quality assurance alignments against a simple genome.
Solexa’s SOP includes dedicating lane 5 from a set of 8 to sequencing the bac-
terophage φX174 genome, a circular single-stranded genome with 5386 the first
to be sequenced back in 1978.

In order to provide an independent check of a Solexa run, we will map pre-
aligned base calls to the phage genome. First we will read in the pre-aligned
phage short reads using the readBaseQuality function from the ShortRead pack-
age.

> sp <- SolexaPath("MGED-2008/extdata/Solexa")

> srX174 <- readBaseQuality(sp,

+ seqPattern="s_5_.*_seq.txt", prbPattern="s_5_.*_prb.txt")

> alphabetFrequency(sread(srX174), collapse = TRUE)

A C G T M R W S
275752 244347 242849 317114 0 0 0 0

Y K V H D B N -
0 0 0 0 0 0 0 10810
+
0

19

> csrX174 <- clean(srX174)

> csrX174

class: ShortReadQ
length: 29173 reads; width: 36 cycles

Now we will load in the Biostrings build-in phiX174 object containing the
sequence that is reported by Solexa to be used during the sequencing experiment.
Given that the phage genome is circular, we will extend the 5’ end with the first
35 bases of the 3’ end.

> data(phiX174) # built-in data

> phiX174

5386-letter "DNAString" instance
seq: GAGTTTTATCGCTTCCATGACGCAGA...AAAATGATTGGCGTATCCAACCTGCA

> phiX174Ext <- DNAString(paste(phiX174, phiX174[1:35], sep = ""))

> phiX174Ext

5421-letter "DNAString" instance
seq: GAGTTTTATCGCTTCCATGACGCAGA...CGCTTCCATGACGCAGAAGTTAACAC

If all of the phage short reads align to the genome, then each location is
expected to have a large coverage.

> nchar(sread(csrX174)[1]) * length(csrX174) / nchar(phiX174)

[1] 194.9922

For illustration purposes, we can generate all possible reads of the extended
phage genome.

> psrX174 <-

+ list("F" =

+ views(phiX174Ext, 1:(nchar(phiX174Ext)-35), 36:nchar(phiX174Ext)),

+ "R" =

+ views(reverseComplement(phiX174Ext), 1:(nchar(phiX174Ext)-35),

+ 36:nchar(phiX174Ext)))

> colMeans(alphabetFrequency(psrX174[["F"]], baseOnly = TRUE))

A C G T other
8.629038 7.733383 8.381730 11.255848 0.000000

The first type of matching we will use is exact string matching as imple-
mented by the matchPDict function. This function requires a pattern dictionary
(or PDict) as an input. Note that although the phage data is single stranded,
the short reads were amplified with a PCR process that generated the reverse
strand.

20

> epdictX174 <-

+ list("F" = PDict(sread(csrX174)),

+ "R" = PDict(reverseComplement(sread(csrX174))))

> ematchX174 <-

+ list("F" = matchPDict(epdictX174[["F"]], phiX174Ext),

+ "R" = matchPDict(epdictX174[["R"]], phiX174Ext))

> table(countIndex(ematchX174[["F"]]))

0 1
20365 8808

> table(countIndex(ematchX174[["R"]]))

0 1
22401 6772

> round(table(countIndex(ematchX174[["F"]]) +

+ countIndex(ematchX174[["R"]])) / length(csrX174), 3)

0 1
0.466 0.534

Exact matching to the genome only resulted in just over 50% alignment to
the phage genome. We can expand the search to allow for up to 2 mismatches
by specifying the max.mismatch argument as 2 in the PDict and matchPDict
function calls (both are required).

> fpdictX174 <-

+ list("F" = PDict(sread(csrX174), max.mismatch = 2),

+ "R" = PDict(reverseComplement(sread(csrX174)), max.mismatch = 2))

> fmatchX174 <-

+ list("F" = matchPDict(fpdictX174[["F"]], phiX174Ext, max.mismatch = 2),

+ "R" = matchPDict(fpdictX174[["R"]], phiX174Ext, max.mismatch = 2))

> table(countIndex(fmatchX174[["F"]]))

0 1 2
17571 11596 6

> table(countIndex(fmatchX174[["R"]]))

0 1 2
20436 8731 6

> round(table(countIndex(fmatchX174[["F"]]) +

+ countIndex(fmatchX174[["R"]])) / length(csrX174), 3)

0 1 2
0.303 0.697 0.000

21

In this case matchPDict function aligned about 70% of the phage short reads
to the genome; 12 of which are mapped twice. We will leave further alignment
of the unmatched phage short reads as an exercise.

Now we will turn our attention to where the phage short reads aligned to
the genome by looking at the coverage.

> getCoverageX174 <- function(x) {

+ ans <- as.integer(coverage(x, 1, length(phiX174)))

+ ans[1:35] <- ans[1:35] +

+ as.integer(coverage(x, length(phiX174) + 1, length(phiX174Ext)))

+ ans

+ }

> coverageX174 <-

+ list("F" = getCoverageX174(ematchX174[["F"]]),

+ "R" = getCoverageX174(ematchX174[["R"]]))

> cor(coverageX174[["F"]], alphabetFrequency(psrX174[["F"]])[,"T"])

[1] 0.4618422

> peakbound <-

+ list("F" =

+ qpois(0.99,

+ nchar(sread(csrX174)[1]) * sum(countIndex(fmatchX174[["F"]]) != 0) /

+ nchar(phiX174)),

+ "R" =

+ qpois(0.99,

+ nchar(sread(csrX174)[1]) * sum(countIndex(fmatchX174[["R"]]) != 0) /

+ nchar(phiX174)))

> nChar <- length(coverageX174[["F"]])

> plotData <-

+ data.frame(Counts = c(coverageX174[["F"]], coverageX174[["R"]]),

+ Position = rep(1:nChar, 2),

+ Direction = rep(c("Forward", "Reverse"), each = nChar))

> print(xyplot(Counts ~ Position, groups = Direction, data = plotData,

+ panel =

+ function(...) {

+ panel.xyplot(...)

+ panel.abline(h = peakbound[["F"]], col = "blue", lty = 3)

+ panel.abline(h = peakbound[["R"]], col = "red", lty = 3)

+ },

+ type = "l",

+ auto.key =

+ list(x = 0.7, y = 0.95, points = FALSE, lines = TRUE)))

22

Position

C
ou

nt
s

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000

Forward
Reverse

In order to find where there is a large accumulations of matches, we can use
the slice to obtain the large peaks.

> slice(coverageX174[["F"]], lower = peakbound[["F"]])

Views on a 5386-integer XInteger subject
subject: 56 56 58 59 55 56 56 60 60 61 60 61 66 65 66 65 65 68 ...
views:

start end width
[1] 1190 1212 23 [99 99 99 103 103 107 105 107 ...]
[2] 1214 1216 3 [99 99 99]
[3] 1218 1219 2 [99 99]
[4] 1573 1580 8 [101 102 105 104 103 103 102 99]
[5] 1586 1586 1 [99]
[6] 1588 1588 1 [99]
[7] 1594 1596 3 [100 100 100]
[8] 2377 2395 19 [101 106 107 106 105 104 105 105 ...]
[9] 2398 2403 6 [102 102 105 105 101 99]
[10] 2506 2509 4 [99 105 102 100]
[11] 2511 2532 22 [101 103 103 110 113 112 109 111 ...]
[12] 2669 2670 2 [101 99]
[13] 3775 3798 24 [99 100 101 101 101 105 108 109 ...]
[14] 3949 3968 20 [99 100 102 101 102 104 103 100 ...]

23

[15] 3992 3993 2 [99 100]
[16] 3998 3998 1 [99]
[17] 4001 4012 12 [100 102 103 103 102 105 105 105 ...]

One interesting feature of the coverage for the phage short reads is that there
are a handful of positions with very low counts. We can examine these locations
with the pairwiseAlignment function.

> phiX174Substr1 <- substring(phiX174, 587-35, 587+35)

> phiX174Substr2 <- substring(phiX174, 833-35, 833+35)

> phiX174Substr3 <- substring(phiX174, 2731-35, 2731+35)

> phiX174Substr4 <- substring(phiX174, 2793-35, 2811+35)

> subalign4 <-

+ pairwiseAlignment(sread(csrX174), phiX174Substr4,

+ type = "subjectOverlap")

> summary(subalign4[score(subalign4) > 0])

Subject Overlap Pairwise Alignment
Number of Alignments: 275

Scores:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1942 31.9400 55.5800 45.9500 63.4600 63.4600

Number of matches:
Min. 1st Qu. Median Mean 3rd Qu. Max.
26.00 31.00 34.00 32.83 35.00 35.00

Top 10 Mismatch Counts:
SubjectPosition Subject Pattern Count Probability

84 54 C T 136 0.95774648
48 36 C T 130 0.97744361
131 78 G T 9 0.09090909
119 70 A T 8 0.06666667
80 53 A C 8 0.05517241
116 69 C T 7 0.05785124
79 52 A T 7 0.04861111
118 70 A G 6 0.05000000
73 50 A C 6 0.04347826
34 29 T G 6 0.04255319

It appears that the reference genome used by Solexa differs from the actual
sequence. Verifying these errors is left as an exercise.

> revisedPhiX174 <-

+ replaceLetterAtLoc(phiX174, c(587,833,2731,2793,2811), "AAGTT")

> revisedPhiX174Ext <-

24

+ replaceLetterAtLoc(phiX174Ext, c(587,833,2731,2793,2811), "AAGTT")

> table(countPDict(epdictX174[["F"]], revisedPhiX174Ext))

0 1
20041 9132

> table(countPDict(epdictX174[["R"]], revisedPhiX174Ext))

0 1
22178 6995

The last topics we will address in this subsection is refining the quality scores
associated with the short reads first by the preliminary quality scores assigned
by Solexa and second by considering the quality associated with each cycle of
the reads. More complicated determinations of quality are left to the reader.

> set.seed(123)

> srsamp <- csrX174[sample(length(csrX174), 2000)]

> alignq <-

+ list("F" =

+ pairwiseAlignment(sread(srsamp), revisedPhiX174Ext,

+ patternQuality =

+ SolexaQuality(quality(quality(srsamp))),

+ subjectQuality = SolexaQuality(99L),

+ type = "subjectOverlap"),

+ "R" =

+ pairwiseAlignment(reverseComplement(sread(srsamp)),

+ revisedPhiX174Ext,

+ patternQuality =

+ SolexaQuality(quality(quality(srsamp))),

+ subjectQuality = SolexaQuality(99L),

+ type = "subjectOverlap"))

> cutoffq <- max(pmin(score(alignq[["F"]]), score(alignq[["R"]])))

> missumq <-

+ list("F" = mismatchSummary(alignq[["F"]][score(alignq[["F"]]) > cutoffq]),

+ "R" = mismatchSummary(alignq[["R"]][score(alignq[["R"]]) > cutoffq]))

> denom <-

+ alphabetFrequency(quality(quality(srsamp)[

+ pmax(score(alignq[["F"]]), score(alignq[["R"]])) > cutoffq]),

+ collapse = TRUE)

> denom <- denom[denom > 0]

> old <-

+ SolexaQuality(paste(rownames(missumq[["F"]]$pattern$quality), collapse = ""))

> qualerrq <-

+ (missumq[["F"]]$pattern$quality[,"Count"] +

+ missumq[["R"]]$pattern$quality[,"Count"]) / denom

> new <- SolexaQuality(rev(cummax(rev(qualerrq))))

> as.integer(old)

25

[1] -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
[19] 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
[37] 32 33 34 35 36 37 38 39 40

> as.integer(new)

[1] 3 3 3 3 3 3 5 5 6 7 8 8 8 10 10 11 11 11
[19] 11 11 13 13 14 14 14 14 15 15 15 15 15 16 16 16 16 16
[37] 18 18 18 18 18 18 18 18 21

> newquality <-

+ chartr(as.character(old), as.character(new), quality(quality(srsamp)))

> newquality[[1]]

36-letter "BString" instance
seq: UUUKJURKJHKUHCENHUUKMUPJNUMPUNEUCPOG

Determining the marginal position based quality measures are much easier
to obtain.

> alignc <-

+ list("F" =

+ pairwiseAlignment(sread(srsamp), revisedPhiX174Ext,

+ type = "subjectOverlap"),

+ "R" =

+ pairwiseAlignment(reverseComplement(sread(srsamp)),

+ revisedPhiX174Ext,

+ type = "subjectOverlap"))

> cutoffc <- max(pmin(score(alignc[["F"]]), score(alignc[["R"]])))

> qualerrc <-

+ (mismatchSummary(

+ alignc[["F"]][score(alignc[["F"]]) > cutoffc])$pattern$position[,"Count"] +

+ rev(mismatchSummary(

+ alignc[["R"]][score(alignc[["R"]]) > cutoffc])$pattern$position[,"Count"])) /

+ sum(pmax(score(alignc[["F"]]), score(alignc[["R"]])) > cutoffc)

> SolexaQuality(qualerrc)

A SolexaQuality instance of length 1
width seq

[1] 36 QOQRPPPPOPPPQPPPOPPPOOONNNOOONNNMMLL

Exercise 13
1. Use the pairwiseAlignment function to generate the forward and reverse

alignment scores for the phage short reads that have more than two mis-
matches. (This may take a few minutes). How many additional alignments
can you find?

2. Verify that the changes made to the phage genome are justifiable.

26

1. Solution 1

> unalign <- (countIndex(fmatchX174[["F"]]) + countIndex(fmatchX174[["R"]]) == 0)

> palignX174 <-

+ list("F" =

+ pairwiseAlignment(sread(csrX174)[unalign], phiX174Ext,

+ type = "subjectOverlap", scoreOnly = TRUE),

+ "R" =

+ pairwiseAlignment(reverseComplement(sread(csrX174)[unalign]), phiX174Ext,

+ type = "subjectOverlap", scoreOnly = TRUE))

> cutoffex <- max(pmin(palignX174[["F"]], palignX174[["R"]]))

> table(pmax(palignX174[["F"]], palignX174[["R"]]) > cutoffex)

FALSE TRUE
3192 5642

> print(histogram(~ pmax(palignX174[["F"]], palignX174[["R"]]),

+ panel = function(...) {panel.histogram(...); panel.abline(v=cutoffex, col = "red")},

+ xlab = "Alignment Score"))

Alignment Score

P
er

ce
nt

 o
f T

ot
al

0

5

10

15

20

−50 0 50

2. Solution 2

> for(i in 1:4) {

+ objName <- paste("subalign", i, sep = "")

27

+ assign(objName,

+ pairwiseAlignment(sread(csrX174), get(paste("phiX174Substr", i, sep ="")),

+ type = "subjectOverlap"))

+ print(summary(get(objName)[score(get(objName)) > 0]))

+ }

4.3 Matching against a large genome

The matchPDict function is on par with commonly used alignment software like
ELAND and MAQ in terms of performance, but much more flexible in terms of
application. We will use matchPDict to align short reads against the mouse
genome. First weeread in the ELAND aligned reads.

> sp <- SolexaPath("MGED-2008/extdata/Solexa")

> aln <- readAligned(sp, pattern="s_1_export.txt")

> caln <- clean(aln)

> caln

class: AlignedRead
length: 96818 reads; width: 35 cycles
chromosome: chrUn_random.fa chr1.fa ... 255:255:255 NM
position: 5251632 163068613 ... NA NA
strand: F R ...
alignQuality: NumericQuality
alignData varLabels: run lane ... y filtering

Next we will create pattern dictionaries for the forward and reverse strands.
To bring the results on par with ELAND, we will allow for up to two mismatches.

> alndict <-

+ list("F" = PDict(sread(caln), max.mismatch = 2),

+ "R" = PDict(reverseComplement(sread(caln)), max.mismatch = 2))

Then we will load the Mus musculus genome provided by the UCSC. This
genome, by default, is “masked” to hide information like assembly gaps and
RepeatMasker identified sequences. We will turn off two of the three masks and
leave the unmasking of the third for an exercise.

> library(BSgenome.Mmusculus.UCSC.mm9)

> Mmusculus

Mouse genome
|
| organism: Mus musculus
| provider: UCSC
| provider version: mm9

28

| release date: Jul. 2007
| release name: NCBI Build 37
|
| single sequences (see '?seqnames'):
| chr1 chr2 chr3 chr4
| chr5 chr6 chr7 chr8
| chr9 chr10 chr11 chr12
| chr13 chr14 chr15 chr16
| chr17 chr18 chr19 chrX
| chrY chrM chr1_random chr3_random
| chr4_random chr5_random chr7_random chr8_random
| chr9_random chr13_random chr16_random chr17_random
| chrX_random chrY_random chrUn_random
|
| multiple sequences (see '?mseqnames'):
| upstream1000 upstream2000 upstream5000
|
| (use the '$' or '[[' operator to access a given sequence)

> chr1 <- Mmusculus$chr1

> masks(chr1)

A MaskCollection instance of length 3 and width 197195432
masks:
maskedwidth maskedratio active

1 5717956 0.02899639 TRUE
2 84650265 0.42927092 TRUE
3 4014755 0.02035927 TRUE

names
1 assembly gaps
2 RepeatMasker
3 Tandem Repeats Finder [period<=12]
all masks together:
maskedwidth maskedratio

90481595 0.4588422

> active(masks(chr1))[1] <- FALSE

> active(masks(chr1))[3] <- FALSE

> masks(chr1)

A MaskCollection instance of length 3 and width 197195432
masks:
maskedwidth maskedratio active

1 5717956 0.02899639 FALSE
2 84650265 0.42927092 TRUE
3 4014755 0.02035927 FALSE

names

29

1 assembly gaps
2 RepeatMasker
3 Tandem Repeats Finder [period<=12]
all masks together:
maskedwidth maskedratio

90481595 0.4588422
all active masks together:
maskedwidth maskedratio

84650265 0.4292709

Now we can align the short reads against chromosome 1.

> chr1aln <-

+ list("F" = matchPDict(alndict[["F"]], chr1, max.mismatch = 2),

+ "R" = matchPDict(alndict[["R"]], chr1, max.mismatch = 2))

> table(countIndex(chr1aln[["F"]]) + countIndex(chr1aln[["R"]]))

0 1 2 3 4 5 6 7 8 9
93969 2331 81 45 36 60 48 77 100 52

10 11 13 22 27 35 39 45 100 116
7 2 1 1 1 2 1 1 1 2

> table(chromosome(caln) == "chr1.fa",

+ countIndex(chr1aln[["F"]]) + countIndex(chr1aln[["R"]]) > 0)

FALSE TRUE
FALSE 92637 710
TRUE 1332 2139

With these alignments, we can plot a short segment of the coverage for
chromosome 1.

> chr1reduce <- list("F" = reduce(unlist(chr1aln[["F"]])),

+ "R" = reduce(unlist(chr1aln[["R"]])))

> tail(sort(width(chr1reduce[["F"]])))

[1] 338 338 338 371 521 570

> crange <-

+ chr1reduce[["F"]][width(chr1reduce[["F"]]) == max(width(chr1reduce[["F"]]))]

> plotData <- data.frame(Position = start(crange):end(crange),

+ Coverage = as.integer(coverage(chr1aln[["F"]], start(crange), end(crange))))

> print(xyplot(Coverage ~ Position, data = plotData, type = "l"))

30

Position

C
ov

er
ag

e

2

4

6

8

10

85054800 85054900 85055000 85055100 85055200 85055300

We can use pairwiseAlignment to further probe the region of chromosome
1 selected above.

> chr1substr <-

+ DNAString(as.character(views(Mmusculus[["chr1"]], start(crange), end(crange))))

> pscores <-

+ list("F" =

+ pairwiseAlignment(sread(caln), chr1substr, type = "subjectOverlap",

+ scoreOnly = TRUE),

+ "R" =

+ pairwiseAlignment(reverseComplement(sread(caln)), chr1substr,

+ type = "subjectOverlap", scoreOnly = TRUE))

> qualityMatrices <- qualitySubstitutionMatrices()

> cutoffpaln <-

+ 34.5 * qualityMatrices[["match"]]["22", "22"] +

+ 1.5 * qualityMatrices[["mismatch"]]["22", "22"]

> chr1palign <-

+ pairwiseAlignment(sread(caln)[pscores[["F"]] >= cutoffpaln], chr1substr,

+ type = "subjectOverlap")

> table(nmismatch(chr1palign))

0 1
12 27

31

> mismatchSummary(chr1palign)$subject

SubjectPosition Subject Pattern Count Probability
1 45 C T 1 1.0000000
2 77 T C 1 0.5000000
3 123 C T 1 0.2000000
4 182 A G 2 1.0000000
5 227 C T 1 1.0000000
6 256 A T 1 0.1428571
7 260 G T 1 0.1666667
8 272 G A 4 1.0000000
9 324 C T 1 0.5000000
10 370 T C 1 1.0000000
11 398 C A 1 0.2500000
12 410 A T 2 0.3333333
13 447 T A 2 1.0000000
14 491 C T 4 1.0000000
15 511 T C 1 0.3333333
16 536 G C 1 0.2500000
17 551 G A 2 1.0000000

Exercise 14
1. Rerun the alignment against chromosome 1 without any masks. (This

may take five minutes or so).

> chr1 <- Mmusculus[["chr1"]

> masks(chr1)

> active(masks(chr1)) <- FALSE

> masks(chr1)

> unmaskchr1aln <-

+ list("F" = matchPDict(alndict[["F"]], chr1, max.mismatch = 2),

+ "R" = matchPDict(alndict[["R"]], chr1, max.mismatch = 2))

> table(countIndex(unmaskchr1aln[["F"]]) + countIndex(unmaskchr1aln[["R"]]) > 0)

FALSE TRUE
86935 9883

> table(chromosome(caln) == "chr1.fa",

+ countIndex(unmaskchr1aln[["F"]]) + countIndex(unmaskchr1aln[["R"]]) > 0)

FALSE TRUE
FALSE 86800 6547
TRUE 135 3336

32

5 Advanced topics

ShortRead and Biostrings provide a great deal of flexiblity. We’ll walk through
the following demos, time permitting.

� Remapping probes. Biostrings can be used to easily remap probes; the
operation is fast enough to be included in an example:

> example(matchPDict)

� Biostrings includes facilities to ‘mask’ regions of the genome so that they
are not searched. This can be computationally efficient (e.g., masked re-
gions do not need to be searched) and biologically relevant (e.g., unmasked
regions may represent targes of a ChIP-seq experiment).

� SNPs can be ‘injected’ into the genome as their IUPAC code. This allows
ambiguous matching on the subject sequence.

� R’s flexible graphics capabilities can display sequence-scale information in
novel and informative ways. For instance, the R package HilbertDisplay-
Curve presents the genome in a compact two-dimensional representation
that clearly discriminates, e.g., diffuse regions of methylation versus highly
specific regions.

6 Resources

Internet

� Home page: http://bioconductor.org

� Mailing lists: http://bioconductor.org/docs/mailList.html. bioc
for general help and informed discussion, bioc-sig-sequencing for short
read and other sequencing related topics.

� BioConductor installation instructions: http://bioconductor.org/install.

� Pages with links to package vignettes:

– http://bioconductor.org/packages/devel/bioc/html/Biostrings.
html

– http://bioconductor.org/packages/devel/bioc/html/ShortRead.
html

Creating this document:

� R version 2.8.0 Under development (unstable) (2008-08-22 r46416), i686-
pc-linux-gnu

� Locale: LC_CTYPE=C; LC_NUMERIC=C; LC_TIME=C; LC_COLLATE=C; LC_MONETARY=C; LC_MESSAGES=en_US.UTF-
8; LC_PAPER=en_US.UTF-8; LC_NAME=C; LC_ADDRESS=C; LC_TELEPHONE=C; LC_MEASUREMENT=en_US.UTF-
8; LC_IDENTIFICATION=C

33

http://bioconductor.org
http://bioconductor.org/docs/mailList.html
http://bioconductor.org/install
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/Biostrings.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html
http://bioconductor.org/packages/devel/bioc/html/ShortRead.html

� Base packages: base, datasets, grDevices, graphics, methods, stats, tools,
utils

� Other packages: BSgenome 1.9.9, BSgenome.Mmusculus.UCSC.mm9 1.3.7,
Biobase 2.1.3, Biostrings 2.9.66, IRanges 0.99.7, ShortRead 0.1.49, lat-
tice 0.17-8

� Loaded via a namespace (and not attached): grid 2.8.0

34

	Introduction
	Exercises

	I/O and quality assessment of aligned reads
	Input
	Preliminary data exploration
	Quality assessment
	Exercises

	Examining short reads
	Summarizing nucleotide frequencies
	`Cleaning' reads
	Exercises

	Pattern matching / Pairwise alignment
	Biostrings matching / alignment methodologies
	Matching against a short genome
	Matching against a large genome

	Advanced topics
	Resources

