
BioC 2016 Developer Day

Core team updates

Thanks!

- Pam Jarrett, Ellen Sanders Noonan, Ellen
Van Stone

- Susan Holmes, Sean Davis
- Speakers and Workshop presenters
- Bioc developers!

The project since last year

- 2 Releases with 187 new packages
- Lots of activity on the support site
- Steadily growing user base
- Move to Roswell Park

Welcome and Project Update

-

Activities and opportunities

Core team activities

- GenomicRanges infrastructure
- AnntotationHub and ExperimentHub
- BiocParallel / GenomicFiles
- Progress on MultiAssayExperiment
- On-disk / lazy evaluation of large data
- Public new package submissions
- User and developer support

Keeping up with the burgeoning R community

- Package development best practices
- Approaches to version control and testing

Increasingly cloud-based computing

- Efficient access to cloud-based resources
- Participation in cloud-based bioinformatics

initiatives
- Computation in the cloud

Career opportunities!

- Senior Programmer / Analyst -- creative
web / system administration / development
-- https://goo.gl/2s26pp

https://www.roswellpark.org/careers/administrative/senior-programmeranalyst-4446
https://goo.gl/2s26pp

Acknowledgements
Core team (current & recent): Valerie Obenchain,
Hervé Pagès, Dan Tenenbaum, Lori Shepherd,
Marcel Ramos, Jim Hester, Jim Java, Brian Long,
Sonali Arora, Nate Hayden, Paul Shannon, Marc
Carlson

Technical advisory board: Vincent Carey, Wolfgang
Huber, Robert Gentleman, Rafael Irizzary, Levi
Waldron, Michael Lawrence, Sean Davis, Aedin
Culhane

Scientific advisory board: Simon Tavare (CRUK),
Paul Flicek (EMBL/EBI), Simon Urbanek (AT&T),
Vincent Carey (Brigham & Women's), Wolfgang Huber
(EBI), Rafael Irizzary (Dana Farber), Robert
Gentleman (23andMe)

Research reported in this presentation was supported by
the National Human Genome Research Institute and the
National Cancer Institute of the National Institutes of
Health under award numbers U41HG004059 and
U24CA180996. The content is solely the responsibility of
the authors and does not necessarily represent the
official views of the National Institutes of Health.

Lori Shepherd

GenomicFiles / VcfStack / RangedVcfStack

disjoin() in IRanges / GenomicRanges

GenomicFiles
VcfStack / RangedVcfStack

VcfStack / RangedVcfStack

The VcfStack class is a vector of related VCF files, for instance
each file representing a separate chromosome. The class helps
manage these files as a group.

The RangedVcfStack class extends VcfStack by associating
genomic ranges of interest to the collection of VCF files.

VcfStack / RangedVcfStack
VcfStack(files=NULL, seqinfo=NULL, colData=NULL)

files: A character vector of files paths pointing to VCF files. The character
vector must be named, with names correspond to seqnames in each VCF file.

seqinfo: A Seqinfo object describing the levels genome and circularity of each
sequence.

colData: An optional DataFrame describing each sample in the VcfStack. When
present, row names must correspond to sample names in the VCF file.

RangedVcfStack(vs=NULL, rowRanges=NULL)

vs: A VcfStack object.

rowRanges: An optional GRanges object associating the genomic ranges of
interest to the collection of VCF files. The seqnames of rowRanges are a
subset of seqnames(vs). If missing, a default is created from the seqinfo
object of the provided VcfStack

VcfStack / RangedVcfStack
Accessors

- dim(x)

- dimnames(x)

- rownames(x)

- colnames(x)

As well as your typical getters and setters for
object attributes:

- files(x)

- seqinfo(x)

- colData(x)

- rowRanges(x)

VcfStack / RangedVcfStack
Methods

assay(x, i, …)

Get matrix of genotype calls from VCF files

readVcfStack(x, i, j=colnames(x))

Get content of VCF files in the VcfStack

show(x)

Display abbreviated information about VcfStack / RangedVcfStack

i: indicated which files to read
is a GRanges object, character() vector of seqnames, numeric() vector, logical() vector, or
can be missing. For a RangedVcfStack object, assay and readVcfStack will use the
associated rowRanges object for i.

j: indicates which samples to read
can be missing or a character() vector of sample names

VcfStack / RangedVcfStack
Subsetting

x[i, j]

 Get elements from ranges i and samples j as a VcfStack or RangedVcfStack object

x: is a VcfStack or RangedVcfStack object

i: indicated which files to subset

can be missing, a character() vector of seqnames, numeric() vector of indexes, or logical() vector.
When x is a VcfStack instance, i can also be a GRanges object; seqnames(i) is then used to subset
the files in the VcfStack.

j: indicated which samples to subset.

can be missing, a character() vector of sample names, a numeric() vector, or logical() vector.

IRanges / GenomicRanges

disjoin()

IRanges / GenomicRanges
disjoin(x, with.revmap=FALSE)

● Ranges
● RangesList
● CompressedIRangesList

disjoin(x, with.revmap=FALSE, ignore.strand=FALSE)

● GenomicRanges
● GRangesList

with.revmap
TRUE or FALSE. Should the mapping from output to input ranges be stored in the returned object? If yes,
then it is stored as metadata column revmap of type IntegerList

GenomicRanges ‘GRanges’ Example

GRanges object with 4 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 k chr1 [8, 11] - | 11 0.2
 l chr1 [6, 15] - | 12 0.3
 m chr3 [8, 11] + | 13 0.3
 n chr3 [6, 15] * | 14 0.1

 seqinfo: 2 sequences from an unspecified genome; no
seqlengths

GRanges object with 5 ranges and 1 metadata column:
 seqnames ranges strand | revmap
 <Rle> <IRanges> <Rle> | <IntegerList>
 [1] chr1 [6, 7] - | 2
 [2] chr1 [8, 11] - | 1,2
 [3] chr1 [12, 15] - | 2
 [4] chr3 [8, 11] + | 3
 [5] chr3 [6, 15] * | 4

 seqinfo: 2 sequences from an unspecified genome; no seqlengths

> gr <- GRanges(Rle(c("chr1", "chr3"), c(2, 2)),
 IRanges(c(8,6,8,6),c(11,15,11,15), names=c("k","l","m","n")),
 Rle(strand(c("-", "-","+","*"))),
 score=11:14, GC=c(.2,.3,.3,.1))> gr

> dgr <- disjoin(gr, with.revmap=TRUE)
> dgr

> revmap <- mcols(dgr)$revmap
> score <- extractList(mcols(gr)$score, revmap)
> GC <- extractList(mcols(gr)$GC, revmap)
> mcols(dgr)$score <- score
> mcols(dgr)$GC <- GC
> dgr

To Get Original Metadata Values:

GRanges object with 5 ranges and 3 metadata columns:
 seqnames ranges strand | revmap score GC
 <Rle> <IRanges> <Rle> | <IntegerList> <IntegerList> <NumericList>
 [1] chr1 [6, 7] - | 2 12 0.3
 [2] chr1 [8, 11] - | 1,2 11,12 0.2,0.3
 [3] chr1 [12, 15] - | 2 12 0.3
 [4] chr3 [8, 11] + | 3 13 0.3
 [5] chr3 [6, 15] * | 4 14 0.1

 seqinfo: 2 sequences from an unspecified genome; no seqlengths

GenomicRanges ‘GRangesList’ Example

GRangesList object of length 2:
[[1]]
GRanges object with 4 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 k chr1 [8, 11] - | 11 0.2
 l chr1 [6, 15] - | 12 0.3
 m chr3 [8, 11] + | 13 0.3
 n chr3 [6, 15] * | 14 0.1

[[2]]
GRanges object with 4 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 k chr1 [8, 11] - | 11 0.2
 l chr1 [6, 15] - | 12 0.3
 m chr3 [8, 11] + | 13 0.3
 n chr3 [6, 15] * | 14 0.1

seqinfo: 2 sequences from an unspecified genome; no seqlengths

GRangesList object of length 2:
[[1]]
GRanges object with 5 ranges and 1 metadata column:
 seqnames ranges strand | revmap
 <Rle> <IRanges> <Rle> | <IntegerList>
 [1] chr1 [6, 7] - | 2
 [2] chr1 [8, 11] - | 1,2
 [3] chr1 [12, 15] - | 2
 [4] chr3 [8, 11] + | 3
 [5] chr3 [6, 15] * | 4

[[2]]
GRanges object with 5 ranges and 1 metadata column:
 seqnames ranges strand | revmap
 [1] chr1 [6, 7] - | 2
 [2] chr1 [8, 11] - | 1,2
 [3] chr1 [12, 15] - | 2
 [4] chr3 [8, 11] + | 3
 [5] chr3 [6, 15] * | 4

seqinfo: 2 sequences from an unspecified genome; no seqlengths

gr <- GRanges(Rle(c("chr1", "chr3"), c(2, 2)),
 IRanges(c(8,6,8,6),c(11,15,11,15), names=c("k","l","m","n")),
 Rle(strand(c("-", "-","+","*"))),
 score=11:14, GC=c(.2,.3,.3,.1))
grl <- GRangesList(gr, gr)

> grl > disjoin(grl, with.revmap=TRUE)

Valerie Obenchain

ExperimentHub

ExperimentHub

Resource to house curated data from experiments, publications or courses

Similar interface as AnnotationHub except …

- Parent package documentation
- List resources by package
- Interface with the data through the package or ExperimentHub
- All data stored in AWS S3; no web downloads

ExperimentHub: parent package documentation

> library(ExperimentHub)

> eh = ExperimentHub()
snapshotDate(): 2016-06-08

> eset = eh[[100]]
see ?curatedMetagenomicData and browseVignettes('curatedMetagenomicData') for documentation
downloading from ‘https://experimenthub.bioconductor.org/fetch/100’
retrieving 1 resource
 |===| 100%

> ?curatedMetagenomicData

ExperimentHub: list resources by package

> head(package(eh), 3)
 EH1 EH2 EH3
 "GSE62944" "curatedMetagenomicData" "curatedMetagenomicData"

> table(package(eh))
 curatedMetagenomicData GSE62944
 162 1

ExperimentHub: interface with data via package

> eh["EH100"]
ExperimentHub with 1 record
snapshotDate(): 2016-06-08
package(): curatedMetagenomicData
$dataprovider: Human Microbiome Project Consortium
$species: Homo sapiens
$title: hmp.r_retroauricular_crease.marker_ab.eset.rda
…

> ?hmp.r_retroauricular_crease.marker_ab.eset ## package man page

> hmp.r_retroauricular_crease.marker_ab.eset() ## loads the data

> hmp.r_retroauricular_crease.marker_ab.eset(metadata = TRUE) ## loads the metadata

ExperimentHubData

Information on adding resources to ExperimentHub is found in the
ExperimentHubData vignette.

http://www.bioconductor.org/packages/3.4/bioc/vignettes/ExperimentHubData/inst/doc/ExperimentHubData.html

Marcel Ramos

MultiAssayExperiment

MultiAssayExperiment
A package to manage multiple assays on sets of samples or specimens

● A container class for handling overlapping sets of samples
● User-friendly operations (subsetting)
● Mapping scheme for relating samples to participants or experiment results to

specimen data
● Set up for common genomic computations across diverse assays
● On-disk representation of data (moving to lazy eval with `HDF5Array`)

Hierarchy of information:
Study

Experiment
Biological Unit

Datasets will
soon be

accessible via
ExperimentHub

MultiAssayExperiment: Structure Overview

● MultiAssayExperiment class
○ Elist class and slot - workhorse container

■ Any class that has a [bracket method, `colnames`, `rownames` and `dim`.
● RangedRaggedAssay
● SummarizedExperiment, RangedSummarizedExperiment
● ExpressionSet
● matrix

○ pData (of class DataFrame) - specimen description
■ Each row is a patient or specimen
■ Includes demographics and/or other specimen-wide variables

○ sampleMap (of class DataFrame) - mapping scheme
■ Maps sample identifiers to participants/specimen in a table

○ metadata (ANY class)
■ Include additional study level information

MultiAssayExperiment: Quick Example

> library(MultiAssayExperiment)

> example(“MultiAssayExperiment”)

> myMultiAssayExperiment

A "MultiAssayExperiment" object of 3 listed
 experiments with user-defined names and respective classes.
 Containing an "Elist" class object of length 3:
 [1] Affy: "ExpressionSet" - 2 rows, 4 columns
 [2] Methyl450k: "matrix" - 2 rows, 5 columns
 [3] CNVgistic: "RangedRaggedAssay" - 5 rows, 3 columns
To access slots use:
 Elist() - to obtain the "Elist" of experiment instances
 pData() - for the primary/phenotype "DataFrame"
 sampleMap() - for the sample availability "DataFrame"
 metadata() - for the metadata object of "ANY" class
See also: subsetByAssay(), subsetByRow(), subsetByColumn()

MultiAssayExperiment: Thorough Example

An in-depth example on how to build your own MultiAssayExperiment can be
found in the package vignette

Hervé Pagès

Recent developments:

● GPos class
● HDF5Array, DelayedArray

What’s next?

GPos

A very light GRanges-like container for
storing a set of positions along the
genome.

Particularly memory-efficient when the
object contains long runs of adjacent
positions.

Can be put on a SummarizedExperiment
object (as rowRanges).

> gpos
GPos object with 12162995 positions and 0 metadata columns:
 seqnames pos strand
 <Rle> <integer> <Rle>
 [1] chrI 1 *
 [2] chrI 2 *
 [3] chrI 3 *
 …
 [12162993] 2micron 6316 *
 [12162994] 2micron 6317 *
 [12162995] 2micron 6318 *

 seqinfo: 18 sequences (2 circular) from sacCer2 genome

All the single positions along the Yeast genome are
represented.

> object.size(gpos)
14000 bytes

GPos

Metadata columns need to be light too.

Good candidates:

➔ Rle (e.g. coverage)
➔ DNAString
➔ sparse object (e.g. Matrix)
➔ on-disk object (e.g. HDF5Array)
➔ ?

Current limitation: length of a GPos object
cannot exceed 2^31 (2 billions).

See ?GPos in the GenomicRanges package
for more information.

> gpos
GPos object with 12162995 positions and 2 metadata columns:
 seqnames pos strand | cov dna
 <Rle> <integer> <Rle> | <Rle> <DNAString>
 [1] chrI 1 * | 0 C
 [2] chrI 2 * | 0 C
 [3] chrI 3 * | 0 A
 [4] chrI 4 * | 0 C
 [5] chrI 5 * | 0 A
 …
 [12162991] 2micron 6314 * | 0 A
 [12162992] 2micron 6315 * | 0 A
 [12162993] 2micron 6316 * | 0 C
 [12162994] 2micron 6317 * | 0 G
 [12162995] 2micron 6318 * | 0 A

 seqinfo: 18 sequences (2 circular) from sacCer2 genome

HDF5Array / DelayedArray

Convenient access and manipulation
of HDF5 datasets.

Can be used inside a
SummarizedExperiment object (assay
data).

A dataset with coverage for 6 samples along Human chr 16:

> cov0 <- HDF5Array(tally_file, "/ExampleStudy/16/Coverages")
> cov0
HDF5Array object of 6 x 2 x 90354753 integers:
, , 1
 [,1] [,2]
[1,] 0 0
[2,] 0 0

[5,] 0 0
[6,] 0 0
…
, , 90354753
 [,1] [,2]
[1,] 0 0
[2,] 0 0

[5,] 0 0
[6,] 0 0

HDF5Array / DelayedArray

Support delayed operations.

Result is a DelayedArray object.

as.array() would realize it in
memory. Don’t do that!

Instead realize it on disk (if you really
need to) with writeHDF5Dataset().

Compute unstranded coverage:

> pcov <- drop(cov0[, 1,]) # delayed
> mcov <- drop(cov0[, 2,]) # delayed
> cov <- pcov + mcov # delayed
> cov
DelayedMatrix object of 6 x 90354753 integers:
 [,1] [,2] [,3] . [,90354751]
[1,] 0 0 0 . 0
[2,] 0 0 0 . 0
[3,] 0 0 0 . 0
[4,] 0 0 0 . 0
[5,] 0 0 0 . 0
[6,] 0 0 0 . 0
 [,90354752] [,90354753]
[1,] 0 0
[2,] 0 0
[3,] 0 0
[4,] 0 0
[5,] 0 0
[6,] 0 0

HDF5Array / DelayedArray

Block-processing:

● Operations that cannot be delayed
(e.g. rowSums() or matrix
multiplication) process the
DelayedArray object block-by-block,
one block at a time.

● Each block is realized (i.e. all delayed
operations are executed) and the
current operation (e.g. rowSums)
applied to the result.

See ?DelayedArray in the HDF5Array
package for more information.

> sum_cov <- rowSums(cov) # block-processing
> sum_cov
[1] 39807797 45246576 18405376 36487401 17218497 36681571

> gc()
 used (Mb) gc trigger (Mb) max used (Mb)
Ncells 2947878 157.5 4703850 251.3 4703850 251.3
Vcells 3765245 28.8 67472700 514.8 58464312 446.1

Loading the full dataset at once in memory would use 4 Gb
of RAM!

What’s next?
❖ HDF5Array:

- Support more operations on DelayedArray objects
- Vignette
- Integration of HDF5Array to some common workflows (e.g. summarizeOverlaps)

❖ Support long Vector derivatives (e.g. long Rle, long DataFrame, long GRanges, long Hits, long DNAString, long
DNAStringSet, etc). Will require important changes to the internals of several core packages (S4Vectors, IRanges,
GenomicRanges, Biostrings, and more…)

❖ On-disk GRanges objects. Indexed for fast extraction of elements that overlap a set of regions of interest (i.e. fast
subsetByOverlaps). Analog to scanBam “which” feature. An immediate use case for this is to speed up
snpsByOverlaps.

❖ Support easy creation of standalone BSgenome objects (from 2bit, FASTA, and maybe other sources).

❖ Maybe other "genomic Views" objects (in addition to BSgenomeViews).

❖ Build system: incremental builds.

