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Two applications of RNA-Seq

Discovery
e find new transcripts
 find transcript boundaries
* find splice junctions

Comparison

Given samples from different experimental conditions, find effects of
the treatment on

e gene expression strengths
« isoform abundance ratios, splice patterns, transcript boundaries



DESeq / DESeq?2

%(C\)
 Method for count data regression “E
%0
. : Y X
R/Bioconductor package el

* widely used,
part of many standard workflows

Anders and Huber, Genome Biology, 2010
Love, Huber, Anders, Genome Biology, 2014
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high-throughput sequencing
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[switch to live demo]



Sequencing count data
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RNA-Seq
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Normalization for library size

* |f sample A has been sampled deeper than
sample B, we expect counts to be higher.

* Naive approach: Divide by the total number of
reads per sample

* Problem: Genes that are strongly and
differentially expressed may distort the ratio
of total reads.



Normalization for library size
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Normalization for library size

Histogram of log2(sample2/samplei)
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Normalization for library size

To compare more than two samples:

* Form a “virtual reference sample” by taking, for
each gene, the geometric mean of counts over all

samples

* Normalize each sample to this reference, to get
one scaling factor (“size factor”) per sample.

Anders and Huber, 2010
similar approach: Robinson and Oshlack, 2010



Counting noise

In RNA-Seq, noise (and hence power) depends
on count level.

fold change knockdown vs control
|
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mean of normalized counts



The Poisson distribution

* This bag contains very many
small balls, 10% of which are
red.

e Several experimenters are
tasked with determining the
percentage of red balls.

 Each of them is permitted to
draw 20 balls out of the bag,
without looking.
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7/100 = 7%
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The Poisson distribution
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Poisson distribution: Counting
uncertainty

expected number of | standard deviation of relative error in estimate
red balls | number of red balls for the fraction of red balls

10 V10 =3 1/v10=31.6%
100 V100 = 10 1/~100 = 10.0%
1,000 V1,000= 32 1/~1000= 3.2%

10,000 V10,000 = 100 1/~10000= 1.0%



The negative binomial distribution

A commonly used generalization of the Poisson
distribution with two parameters
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Testing: Generalized linear models

Two sample groups, treatment and control.

Assumption:

 Count value for a gene in samplej is generated by NB
distribution with mean s; u; and dispersion a.

Null hypothesis:
* All samples have the same v,

Alternative hypothesis:
* Mean is the same only within groups:
log ;= 6y + X; 5r
x;= 0 for if j is control sample
x;=1for if jis treatment sample



Testing: Generalized linear models

log 1= 6y + X; Br
x;= 0 for if j is control sample
x;= 1 for if j is treatment sample

Calculate the coefficients FSthat fit best the observed data.
s the value for B; significantly different from null?
Can we reject the null hypothesis that it is merely cause by noise?

The Wald test gives us a p value.



p values

The p value from the Wald test indicates the
probability that the observed difference
between treatment and control (as indicated by
), or an even stronger one, is observed even
though the there is no true treatment effect.



p values

Assuming that there is no true effect,
what is the probability
of seeing the observed effect
or an even stronger one?



Multiple testing

* Consider: A genome with 10,000 genes

* We compare treatment and control.

Unbeknownst to us, the treatment had no
effect at all.

* How many genes will have p < 0.05?



Multiple testing

Consider: A genome with 10,000 genes

We compare treatment and control.
Unbeknownst to us, the treatment had no
effect at all.

How many genes will have p < 0.05?

0.05 x 10,000 = 500 genes.



Multiple testing

Consider: A genome with 10,000 genes
We compare treatment and control
Now, the treatment is real.

1,500 genes have p < 0.05.
How many of these are false positives?



Multiple testing

Consider: A genome with 10,000 genes
We compare treatment and control
Now, the treatment is real.

1,500 genes have p < 0.05.
How many of these are false positives?

500 genes, i.e., 33%



Dispersion

e A crucial input to the GLM procedure and the
Wald test is the estimated strength of within-
group variability.

* Getting this right is the hard part.






Estimation of variability is the bottleneck

Example: A gene differs by 20% between samples
within a group (CV=0.2)

What fold change gives rise to p=0.00017

Number of 100
samples

CV known 55% 45% 39% 35% 35% 11%

CV estimated

(assuming normality and use of z or t test, resp.)



Estimation of variability is the bottleneck

Example: A gene differs by 20% between samples
within a group (CV=0.2)

What fold change gives rise to p=0.00017

Number of 100
samples

CV known 55% 45% 39% 35% 35% 11%
CV estimated 1400%  180% 91% 64% 31% 11%
(14x) (1.8x)

(assuming normality and use of z or t test, resp.)






Shrinkage estimation of log fold changes
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fold change knockdown vs control
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MLE log, fold change
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Gene ranking

How to rank a gene list to prioritize down-
stream experiments?

* by p value?
* by log fold change?

* by shrunken log fold change!



Shrinkage estimation of dispersions






Dispersion

* quantifies within-group variability
* reliable estimation is crucial

* hard to estimate from few samples

» Use empirical-Bayes shrinkage estimation



Shrinkage estimation of dispersion (within-group variability)
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Shrinkage estimation of dispersion (within-group variability)
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Shrinkage estimation of dispersion (within-group variability)
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More things to do with shrinkage:
The rlog transformation

Many useful methods want homoscedastic data:

e Hierarchical clustering
* PCA and MDS

But: RNA-Seq data is not homoscedastic.



Visualization of rlog-transformed data:
Sample clustering and PCA
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Data: Parathyroid samples from Haglung et al., 2012



Visualizationof rlog-transformed data:
Gene clustering

RERRERE



More things to do with shrinkage:
The rlog transformation

RNA-Seq data is not homoscedastic.

* On the count scale, large counts have large
(absolute) variance.

* After taking the logarithm, small counts show
excessive variance.



More things to do with shrinkage:
The rlog transformation

Conceptual idea of the rlog transform:

Log-transform the average across samples of
each gene’s normalized count.

The “pull in” the log normalized counts towards
the log averages. Pull more for weaker genes.



More things to do with shrinkage:
The rlog transformation

Procedure:

Fit log-link GLM with intercept for average and
one coefficient per sample.

Estimate empirical-Bayes prior from sample
coefficients.

Fit again, now with ridge penalty from EB
prior.

Return fitted linear predictors.



Summary: Effect-size shrinkage

A simple method that makes many things easier,
including:

* visualizing and interpreting effect sizes
* ranking genes
e performing GSEA

e performing clustering and ordination analyses



Complex designs



Generalized linear models

* read count for gene i in sample j:
Kij ~ NB (sjuij, ;)
e expected expression from linear model
logu;; = Bio + Birxj1 + BizXj2
with design-matrix elements x;. and to-be-
determined coefficients f;..

* dispersion «;.



DESeq?2 is not only for RNA-Seq

- RNA-Seq
- ChlIP-Seq
- barcode-based assays

- metagenomics data

- ribosome profiling

- shRNA and
CRISPR/Cas9 screen

1000+ papers

Ross-Ines et al., Nature, 2012
Avangani et al., Nature, 2014

e.g., Robinson, G3, 2013

McMurdie et al., PLoS Comp Biol , 2014

Vasquez et al., Nucl Acids Res, 2014

Zhou et al., Nature, 2014






What does
“differentially expressed”
actually mean?



Genes changing significantly more than 2-fold:
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Genes changing significantly less than 2-fold:
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Outlier
robustness
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Color Key

E

The “regularized log”(“rlog”) transformation
renders RNA-Seq data suitable for clustering and ordination methods
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Complex designs

Simple: Comparison between two groups.

More complex:

e paired samples

e testing for interaction effects

e accounting for nuisance covariates



GLMs: Blocking factor

Sample treated sex
Sl no male
S2 no male
S3 no male
S4 no female
S5 no female
S6 yes male
S7 yes male
S8 yes female
S9 yes female
S10 yes female




GLMs: Blocking factor
Kij ~ NB(sjpij, aij)
full model for gene i:
log pi; = /3? =+ /31835’38 + 5?3?}1

reduced model for gene i:

log pui; = 587 + B«



GLMs: Interaction
Kij ~ NB(sjpij, aij)
full model for gene i:

log pij = 57 +f3z'sﬂ7§’ +/3;:T%T +/3ZIQ;JS.99;F

reduced model for gene i:

log pij = 87 + Bia5 + B «j



GLMs: paired designs

e Often, samples are paired (e.g., a tumour and
a healthy-tissue sample from the same patient)

* Then, using pair identity as blocking factor improves power.

full model:

T 0 for I = 1(healthy)
log pijr = 6; + { /B;I for [ = 2(tumour)

reduced model: i gene

' bject
1 . — 130 J sU
Og ij b [ tissue state



GLMs: Dual-assay designs

How does the affinity of an RNA-binding protein to
MRNA change under some drug treatment?

Prepare control and treated samples (in replicates)
and perform on each sample RNA-Seq and CLIP-Seq.

For each sample, we are interested in the
ratio of CLIP-Seq to RNA-Seq reads.

How is this ratio affected by treatment?



GLMs: CLIP-Seq/RNA-Seq assay

full model:
count ~ assayType + treatment + assayType:treatment

reduced model:
count ~ assayType + treatment



GLMs: CLIP-Seq/RNA-Seq assay

full model:
count ~ sample + assayType + assayType:treatment

reduced model:
count ~ sample + assayType



Genes and transcripts

e So far, we looked at read counts per gene.
A gene’s read count may increase
* because the gene produces more transcripts

* because the gene produces longer transcripts

How to look at gene sub-structure?



Assigning reads to transcripts

A [
B ]

100 reads 10 reads 30 reads

from A from B



Assigning reads to transcripts

A [

B [ 1]
200 reads 5 reads 15 reads
(50 from A, from A from B
150 from B?)

total: A: 55 reads
B: 165 reads (accuracy?)



One step back:
Differential exon usage

Our tool, DEXSeq, tests for differential usage of exons.

Usage on an exon =

number of reads mapping to the exon

number of reads mapping to any other exon of the same gene



Differential exon usage -- Example
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Fitted expression

Differential exon usage -- Example

Y -kinase

s/ T-kinase

AGC-kinase

A|

1
1930824

1 I I 1 I 1 1 I I
1946019 1961214 1976409 1991604 20aleaey 2021995 2037190 2052385 2067580



Differential usage of
exons or of isoforms?

] I [

casette exon with casette exon with

well-understood uncharacterized
function function



Summary

Estimating fold-changes without estimating
variability is pointless.

Estimating variability from few samples
requires information sharing across genes
(shrinkage)

Shrinkage can also regularize fold-change
estimates. (New in DESeq?2)

This helps with interpretation, visualization,
clustering, ordination, etc.
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Replication at what level?

* Prepare several libraries from the same
sample (technical replicates).

—> controls for measurement accuracy
— allows conclusions about just this sample



Replication at what level?

* Prepare several samples from the same cell-
line (biological replicates).
— controls for measurement accuracy and

variations in environment an the cells’ response to
them.

—> allows for conclusions about the specific cell line



Replication at what level?

* Derive samples from different individuals
(independent samples).

— controls for measurement accuracy, variations in
environment and variations in genotype.

—> allows for conclusions about the species



How much replication?

Two replicates permit to
* globally estimate variation

Sufficiently many replicates permit to
* estimate variation for each gene

* randomize out unknown covariates
* spot outliers

* improve precision of expression and fold-change
estimates



