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Two applications of RNA-Seq

Discovery
• find new transcripts

• find transcript boundaries

• find splice junctions

Comparison
Given samples from different experimental conditions, find effects of 
the treatment on

• gene expression strengths

• isoform abundance ratios, splice patterns, transcript boundaries



DESeq / DESeq2

• Method for count data regression

• R/Bioconductor package 

• widely used, 
part of many standard workflows

Anders and Huber, Genome Biology, 2010

Love, Huber, Anders, Genome Biology, 2014



Count data in 
high-throughput sequencing

`                  control_1 control_2    control_3    treated_1    treated_2    treated_3

ENSG00000000003           792          1064          444          953          519          855

ENSG00000000005             4             1            2            3            3            1

ENSG00000000419           294           282          164          263          179          217

ENSG00000000457           156           184           93          145           75          122

ENSG00000000460           396           207          210          212          221          173

ENSG00000000938             3             8            2            5            0            4

ENSG00000000971            12            23           10           12            4            7

ENSG00000001036          2536          2349         1438         2307         1339         1677

ENSG00000001084           385           411          244          457          243          329

ENSG00000001167           374           464          218          396          274          321

ENSG00000001460            78           103           48           73           42           70

ENSG00000001461           441           560          256          495          276          456

ENSG00000001497           497           467          289          443          350          332

ENSG00000001561           500           644          299          521          295          490

ENSG00000001617            67           114           29           94           45           79

ENSG00000001626             1             1            0            1            0            0

ENSG00000001629          1151          1382          620         1229          791         1001

ENSG00000001630           450           501          284          547          255          319

ENSG00000001631           463           515          251          525          309          376

ENSG00000002016           129           157           65          137           78          106

ENSG00000002079             0             3            0            0            0            0

samples

ge
n

es



[switch to live demo]



Sequencing count data

control-1  control-2  control-3    treated-1    treated-2

FBgn0000008         78         46         43           47           89

FBgn0000014          2          0          0            0            0

FBgn0000015          1          0          1            0            1

FBgn0000017       3187       1672       1859         2445         4615

FBgn0000018        369        150        176          288          383

[...]

• RNA-Seq
• Tag-Seq
• ChIP-Seq
• HiC
• Bar-Seq
• ...



Normalization for library size

• If sample A has been sampled deeper than 
sample B, we expect counts to be higher. 

• Naive approach: Divide by the total number of 
reads per sample

• Problem: Genes that are strongly and 
differentially expressed may distort the ratio 
of total reads.



Normalization for library size



Normalization for library size



Normalization for library size

To compare more than two samples:

• Form a “virtual reference sample” by taking, for 
each gene, the geometric mean of counts over all 
samples

• Normalize each sample to this reference, to get 
one scaling factor (“size factor”) per sample.

Anders and Huber, 2010

similar approach: Robinson and Oshlack, 2010



Counting noise

In RNA-Seq, noise (and hence power) depends 
on count level.

Why?



The Poisson distribution

• This bag contains very many 
small balls, 10% of which are 
red.

• Several experimenters are 
tasked with determining the 
percentage of red balls.

• Each of them is permitted to 
draw 20 balls out of the bag, 
without looking.



3 / 20  = 15%

1 / 20 =   5%

2 / 20 = 10%

0 / 20 =  0%



7 / 100  =   7%

10 / 100  = 10%

8 / 100  =   8%

11 / 100 = 11%



The Poisson distribution

Pr 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!



Poisson distribution: Counting 
uncertainty

expected number of 
red balls

standard deviation of 
number of red balls

relative error in  estimate 
for the fraction of red balls

10 10 = 3 1 / 10 = 31.6%

100 100 =   10 1 / 100 = 10.0%

1,000
1,000 =   32

1 / 1000 =   3.2%

10,000
10,000 = 100

1 / 10000 = 1.0%



The negative binomial distribution
A commonly used generalization of the Poisson 
distribution with two parameters



The NB from a hierarchical model

Biological sample with
mean µ and variance v

Poisson distribution with 
mean q and variance q.

Negative binomial with 
mean µ and variance q+v.



Testing: Generalized linear models
Two sample groups, treatment and control.

Assumption:
• Count value for a gene in sample j is generated by NB 

distribution with mean s j μj and dispersion α.

Null hypothesis:
• All samples have the same μj.

Alternative hypothesis:
• Mean is the same only within groups:

log μj = β0 + xj βT

xj = 0 for if j is control sample
xj = 1 for if j is treatment sample



Testing: Generalized linear models

log μj = β0 + xj βT

xj = 0 for if j is control sample
xj = 1 for if j is treatment sample

Calculate the coefficients β that fit best the observed data.

Is the value for βT significantly different from null?

Can we reject the null hypothesis that it is merely cause by noise?

The Wald test gives us a p value.



p values

The p value from the Wald test indicates the 
probability that the observed difference 
between treatment and control (as indicated by 
βT), or an even stronger one, is observed even 
though the there is no true treatment effect.



p values

Assuming that there is no true effect,

what is the probability 

of seeing the observed effect

or an even stronger one?



Multiple testing

• Consider: A genome with 10,000 genes

• We compare treatment and control. 
Unbeknownst to us, the treatment had no 
effect at all.

• How many genes will have p < 0.05?



Multiple testing

• Consider: A genome with 10,000 genes

• We compare treatment and control. 
Unbeknownst to us, the treatment had no 
effect at all.

• How many genes will have p < 0.05?

• 0.05 × 10,000 = 500 genes.



Multiple testing

• Consider: A genome with 10,000 genes

• We compare treatment and control

• Now, the treatment is real.

• 1,500 genes have p < 0.05.

• How many of these are false positives?



Multiple testing

• Consider: A genome with 10,000 genes

• We compare treatment and control

• Now, the treatment is real.

• 1,500 genes have p < 0.05.

• How many of these are false positives?

• 500 genes, i.e., 33%



Dispersion

• A crucial input to the GLM procedure and the 
Wald test is the estimated strength of within-
group variability.

• Getting this right is the hard part.





Estimation of variability is the bottleneck

Example: A gene differs by 20% between samples 
within a group (CV=0.2)

What fold change gives rise to p=0.0001?

Number of 
samples

4 6 8 10 20 100

CV known 55% 45% 39% 35% 35% 11%

CV estimated

(assuming normality and use of z or t test, resp.)



Estimation of variability is the bottleneck

Example: A gene differs by 20% between samples 
within a group (CV=0.2)

What fold change gives rise to p=0.0001?

Number of 
samples

4 6 8 10 20 100

CV known 55% 45% 39% 35% 35% 11%

CV estimated 1400%
(14x)

180%
(1.8x)

91% 64% 31% 11%

(assuming normality and use of z or t test, resp.)





Shrinkage estimation of log fold changes





without shrinkage with shrinkage







Gene ranking

How to rank a gene list to prioritize down-
stream experiments?

• by p value?

• by log fold change?

• by shrunken log fold change!



Shrinkage estimation of dispersions





Dispersion

• quantifies within-group variability

• reliable estimation is crucial

• hard to estimate from few samples

Use empirical-Bayes shrinkage estimation



Shrinkage estimation of dispersion (within-group variability)



Shrinkage estimation of dispersion (within-group variability)



Shrinkage estimation of dispersion (within-group variability)



More things to do with shrinkage:

The rlog transformation 

Many useful methods want homoscedastic data:

• Hierarchical clustering

• PCA and MDS

But: RNA-Seq data is not homoscedastic.



Visualization of rlog-transformed data:
Sample clustering and PCA

Data: Parathyroid samples from Haglung et al., 2012



Visualizationof rlog-transformed data:
Gene clustering



More things to do with shrinkage:

The rlog transformation 

RNA-Seq data is not homoscedastic.

• On the count scale, large counts have large 
(absolute) variance.

• After taking the logarithm, small counts show 
excessive variance.



More things to do with shrinkage:

The rlog transformation 

Conceptual idea of the rlog transform:

Log-transform the average across samples of 
each gene’s normalized count.

The “pull in” the log normalized counts towards 
the log averages. Pull more for weaker genes.



More things to do with shrinkage:

The rlog transformation 

Procedure:

• Fit log-link GLM with intercept for average and 
one coefficient per sample.

• Estimate empirical-Bayes prior from sample 
coefficients.

• Fit again, now with ridge penalty from EB 
prior.

• Return fitted linear predictors.



Summary: Effect-size shrinkage

A simple method that makes many things easier, 
including:

• visualizing and interpreting effect sizes

• ranking genes

• performing GSEA

• performing clustering and ordination analyses



Complex designs



Generalized linear models

• read count for gene 𝑖 in sample 𝑗:
𝐾𝑖𝑗 ~ 𝑁𝐵 (𝑠𝑗𝜇𝑖𝑗 , 𝛼𝑖)

• expected expression from linear model
log 𝜇𝑖𝑗 = 𝛽𝑖0 + 𝛽𝑖1𝑥𝑗1 + 𝛽𝑖2𝑥𝑗2

with design-matrix elements 𝑥𝑗∙ and to-be-

determined coefficients 𝛽𝑖∙.

• dispersion 𝛼𝑖.



DESeq2 is not only for RNA-Seq

- RNA-Seq 1000+ papers

- ChIP-Seq Ross-Ines et al., Nature, 2012

Avangani et al., Nature, 2014

- barcode-based assays e.g., Robinson, G3, 2013

- metagenomics data McMurdie et al., PLoS Comp Biol , 2014

- ribosome profiling Vasquez et al., Nucl Acids Res, 2014

- shRNA and

CRISPR/Cas9 screen Zhou et al., Nature, 2014





What does 

“differentially expressed” 

actually mean?



Genes changing significantly more than 2-fold:



Genes changing significantly less than 2-fold:



Outlier 
robustness



Outlier 
robustness





The “regularized log”(“rlog”) transformation
renders RNA-Seq data suitable for clustering and ordination methods





Complex designs

Simple: Comparison between two groups.

More complex:

• paired samples

• testing for interaction effects

• accounting for nuisance covariates

• …



GLMs: Blocking factor

Sample treated sex

S1 no male

S2 no male

S3 no male

S4 no female

S5 no female

S6 yes male

S7 yes male

S8 yes female

S9 yes female

S10 yes female



GLMs: Blocking factor

full model for gene i:

reduced model for gene i:



GLMs: Interaction

full model for gene i:

reduced model for gene i:



GLMs: paired designs

• Often, samples are paired (e.g., a tumour and 
a healthy-tissue sample from the same patient)

• Then, using pair identity as blocking factor improves power.

full model:

reduced model:



GLMs: Dual-assay designs

How does the affinity of an RNA-binding protein to 
mRNA change under some drug treatment?

Prepare control and treated samples (in replicates) 
and perform on each sample RNA-Seq and CLIP-Seq.

For each sample, we are interested in the 
ratio of CLIP-Seq to RNA-Seq reads.

How is this ratio affected by treatment?



GLMs: CLIP-Seq/RNA-Seq assay

full model:
count ~ assayType + treatment + assayType:treatment

reduced model:
count ~ assayType + treatment



GLMs: CLIP-Seq/RNA-Seq assay

full model:
count ~ sample + assayType + assayType:treatment

reduced model:
count ~ sample + assayType



Genes and transcripts

• So far, we looked at read counts per gene.

A gene’s read count may increase

• because the gene produces more transcripts

• because the gene produces longer transcripts

How to look at gene sub-structure?



Assigning reads to transcripts

100 reads 10 reads

from A

30 reads

from B

A

B



Assigning reads to transcripts

200 reads

(50 from A,
150 from B?)

5 reads

from A

15 reads

from B

A

B

total:   A:   55 reads
B: 165 reads     (accuracy?)



One step back: 

Differential exon usage

Our tool, DEXSeq, tests for differential usage of exons.

Usage on an exon = 

number of reads mapping to the exon
number of reads mapping to any other exon of the same gene



Differential exon usage -- Example



Differential exon usage -- Example



Differential usage of 
exons or of isoforms?

A

B

C

D

casette exon with 
well-understood
function

casette exon with 
uncharacterized
function



Summary

• Estimating fold-changes without estimating 
variability is pointless.

• Estimating variability from few samples 
requires information sharing across genes 
(shrinkage)

• Shrinkage can also regularize fold-change 
estimates.  (New in DESeq2)

• This helps with interpretation, visualization, 
clustering, ordination, etc.



Acknowledgments

• Michael Love

• Alejandro Reyes

• Wolfgang Huber

Thanks also to

• the rest of the Huber group

• all users who provided feed-back

Funding:

EMBL

European Union:
FP7-health Project Radiant





Replication at what level?

• Prepare several libraries from the same 
sample (technical replicates).

 controls for measurement accuracy

 allows conclusions about just this sample



Replication at what level?

• Prepare several samples from the same cell-
line (biological replicates).

 controls for measurement accuracy and 
variations in environment an the cells’ response to 
them. 

 allows for conclusions about the specific cell line



Replication at what level?

• Derive samples from different individuals 
(independent samples).

 controls for measurement accuracy, variations in 
environment and variations in genotype.

 allows for conclusions about the species



How much replication?

Two replicates permit to

• globally estimate variation

Sufficiently many replicates permit to

• estimate variation for each gene

• randomize out unknown covariates

• spot outliers

• improve precision of expression and fold-change 
estimates


