Linear Models

Two sample tests

- tests such as the t-test or Wilcoxon are used to compare two samples
- there is no obvious way to adjust for, or control for other variables
- eg we might want to adjust for age and sex when comparing gene expression values across human samples
- to do that we consider more general regression models

A simple experiment

- we are interested in comparing gene expression between two groups of people ($\mathrm{n}=10$ in each group)
- blood is drawn and baseline for RNA-seq analysis
- participants are randomly split into two groups,
- Group 1 and Group 2
- Group 1 goes for 1 week to a resort at an altitude of 5 K ft .
- Group 2 goes for 1 week to a resort at sea level
- both groups go through the same amount of exercise and are given the same diet
- RNA is extracted
- we sequence, get counts and want to compare the changes in gene expression
- so we have 20 K genes, and for each one 10 measurements for each group
- careful examination of the data suggests that we:
- add one to the counts and then use the log of RNA count
- that we model difference in the log of the (counts +1) pre and post test
- we consider these are our responses (one test for each gene)

The t-test as linear regression

- for each gene, the t -test is then the difference in means between the two groups divided by an estimate of the standard error

$$
\frac{\hat{\hat{\mu}}_{1}-\hat{\mu}_{2}}{\hat{\sigma}_{p}}
$$

- An equivalent form of the t -test for two samples (compare Group 1 to Group 2)

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon
$$

- where $x_{i}=0$ if the $i^{\text {th }}$ person is in Group 1 and $x_{i}=1$ if the $i^{t h}$ person is in Group 2
- and $\varepsilon \sim N\left(0, \sigma^{2}\right)$
$-\mathrm{E}[\mathrm{Y} \mid \mathrm{X}=0]=\beta_{0}=\mu_{1}$
$-E[Y \mid X=1]=\beta_{0}+\beta_{1}=\mu_{2}$
- So a test of $\beta_{1}=0$, is the same as the t-test that the means in the two groups are the same
- We can show that the two tests are identical

Linear Models

- the main reason to consider the linear model approach is that it allows us to easily include other variables

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\varepsilon
$$

- where β_{2} could be sex and β_{3} could be age, for example
- sex could be encoded as 1 for Female, 0 Male, then β_{2} will be the mean change in response for Females.
- β_{3} tells us the mean change in y for a one unit change in x (could be years, if age is measured in years)
- we would then think of β_{1} as the effect of our treatment, adjusted for age and sex

Some assumptions

- that the model holds, at least approximately

$$
y_{i}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\ldots \beta_{k} x_{k, i}+\varepsilon_{i}
$$

- that the response y is linearly associated with the x^{\prime} s, there are k covariates
- that the errors are approximately Normal with approximately constant variance (over all x 's)
- Anscombe devised a simple example with four different sets of data, but where the estimates are identical [HW: data(anscombe)....]

Which one is appropriate for linear regression

The outputs:

```
anscmb> lapply(mods, function(fm) coef(summary(fm)))
$lm1
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 3.0000909 & 1.1247468 & 2.667348 & 0.025734051 \\
\(\times 1\) & 0.5000909 & 0.1179055 & 4.241455 & 0.002169629
\end{tabular}
$1m2
\begin{tabular}{lllll} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 3.000909 & 1.1253024 & 2.666758 & 0.025758941 \\
\(\times 2\) & 0.500000 & 0.1179637 & 4.238590 & 0.002178816
\end{tabular}
\(\$ 1 m 3\)
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 3.0024545 & 1.1244812 & 2.670080 & 0.025619109 \\
\(\times 3\) & 0.4997273 & 0.1178777 & 4.239372 & 0.002176305
\end{tabular}
```

$\$ 1 m 4$

| | Estimate | Std. Error | t value | Pr $(>\|t\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 3.0017273 | 1.1239211 | 2.670763 | 0.025590425 |
| $\times 4$ | 0.4999091 | 0.1178189 | 4.243028 | 0.002164602 |

Caution

- Im does not check the assumptions of the linear model - nor does it check whether the model actually fit the data
- that is YOUR JOB!
- if your model does not fit the data, or if any of the assumptions are not valid then the parameters really have no interpretation
- your p-values are not interpretable

Some special cases

- Analysis of Variance: ANOVA models
- usually refer to the case where X specifies a number of different groups
- typically including interactions
- eg: we want to study the yield from two types of wheat, in two fields
- $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$
- where X_{1} is coded 0 for Field 1 and 1 for Field 2
- and X_{2} is coded as 0 for Type 1 and 1 for Type 2
- so β_{0} is the mean yield for Field 1, Type 1
- $\beta_{0}+\beta_{1}$ is the mean yield for Field 2, Type 1
- $\beta_{0}+\beta_{2}$ is the mean yield for Field 1, Type 2
- $\beta_{0}+\beta_{1}+\beta_{2}$ is the mean yield for Field 2 , Type 2

ANOVA

- two types of wheat, two fields we got the model
- $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$
- where X_{1} is coded 0 for Field 1 and 1 for Field 2
- and X_{2} is coded as 0 for Type 1 and 1 for Type 2
- what else are we assuming in this model?
- that there is no interaction! that the effect of the field and that of the type of wheat are the same
- suppose that field 2 is much wetter than field 1
- and suppose that Type 1 likes dry weather, type 2 likes more moisture
- we can model this by adding in one more term to our model
- $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\varepsilon$
- here β_{3} requires both X_{1} and X_{2} to be 1
- so it captures those data points for Field 2 and Type 2 simultaneously

Mix continuous and discrete

- income as a function of age (continuous) and $\operatorname{sex}(M / F)$
- $y=\beta_{0}+\beta_{1} X_{A}+\beta_{2} X_{M}+\beta_{3} X_{A}^{*} X_{M}+\varepsilon$
- now β_{1} is the effect on income of Age, if β_{1} is positive then income increases with age
$-\beta_{2}$ is the effect for sex (suppose $X_{M}=1$ if Male), then that represents the difference between males and females
$-\beta_{3}$ is the interaction, it allows the slope of the age relationship to be different for men and women

Interactions: mean income by age

- In the top panel we see two parallel lines
- the effect of age is the same for both sexes
- In the bottom panel the lines diverge
- the effect of sex is different for each age

More assumptions

- we assume that the X's are measured without error (there are other models, errors-in-variables, that can be used)
- we assume that the y measurements are independent
- this fails when we measure the same person over and over (repeated measures)
- it fails for almost all mouse experiments (litter effects, shared cages and so on)
- addressing these concerns usually requires the use of so-called random effects models, or mixed-effects models

Modeling in R

- Im is the main function
- a simple example from Modern Applied Statistics, Chapter 6 (Venables andRipley)
- library(MASS); data(whiteside)
- the data consist of measurements before and after Mr. Whiteside added insulation to his home
- mean temperature in degrees C for the week
- gas consumption for the week
- before and after insulation

Plot the data

Now fit some models

- gasA $=\operatorname{lm}\left(\right.$ Gas $^{\sim}$ Temp, data=whiteside, subset=Insul=="Before")
- gasB $=\operatorname{lm}\left(\right.$ Gas$^{\sim}$ Temp, data=whiteside, subset=Insul=="After")
- summary(gasA)

```
Coefficients:
\begin{tabular}{lrrrr|r} 
& Estimate & Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 4.72385 & 0.12974 & 36.41 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
Temp & -0.27793 & 0.02518 & -11.04 & \(1.05 e-11\) & \(* * *\)
\end{tabular}
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3548 on 28 degrees of freedom
Multiple R-squared: 0.8131, Adjusted R-squared: 0.8064
F-statistic: 121.8 on 1 and 28 DF, p-value: 1.046e-11
```


Model before

- summary(gasB)

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.85383 0.11842 57.88 <2e-16***
Temp -0.39324 0.01959 -20.08 <2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2813 on 24 degrees of freedom
Multiple R-squared: 0.9438, Adjusted R-squared: 0.9415
F-statistic: 403.1 on 1 and 24 DF, p-value: < 2.2e-16
```


Fit them together

- gasBA $=\operatorname{lm}($ Gas \sim Insul/Temp-1, data $=$ whiteside)
- summary(gasBA)

```
Coefficients:
InsulBefore
InsulAfter 4.85383 0.72385 0.11810 40.00 <2e-16 ***
lllll
InsulAfter:Temp -0.27793 0.02292 -12.12 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.323 on 52 degrees of freedom
Multiple R-squared: 0.9946, Adjusted R-squared: 0.9942
F-statistic: }2391\mathrm{ on 4 and 52 DF, p-value: < 2.2e-16
```

- the parameter estimates are the same
- their standard errors are different because we are now estimating them jointly

Explain the model forumla

- Im(formula = Gas ~ Insul/Temp - 1, data = whiteside)
- the Insul/Temp: says fit a model of the form 1+Temp, separately for each level of Insul
- Insul has two levels (Before and After)
- the last term, -1 , means do not fit an overall intercept
- we don't need one in this case because there is a separate intercept for each level of Insul

Why would we do this?

- Why would we want to combine the two sets of observations?
- Mostly because, if they error terms are roughly similar then having more data improves our estimate of the standard error of the β 's
- this improves our power and uses all of our data

Even more complicated

- gasBA2 $=\operatorname{lm}($ Gas $\sim \operatorname{Insul} /($ Temp $+1($ Temp^2) $)$ 1, data $=$ whiteside)
- what do you think this means?
- summary(gasBA2)\$coef

```
> summary(gasBA2) $coef
InsulAfter 4.496373920 0.160667904 27.985514 3.302572e-32
InsulBefore:Temp -0.317658735 0.062965170 -5.044991 6.362323e-06
InsulAfter:Temp -0.137901603 0.073058019 -1.887563 6.489554e-02
InsulBefore:I (Temp^2) -0.008472572 0.006624737 -1.278930 2.068259e-01
InsulAfter:I(Temp^2) -0.014979455 0.007447107 -2.011446 4.968398e-02
```


Things to notice

- when we added the terms Temp^2 to the model we could test for linearity
- which we did not see - and indeed we lost the effects for Temp altogether
- Why?
- Collinearity and its effects

Linear Models and Collinearity

- the easiest models to interpret are those where the columns of X are orthogonal to each other
- in that case the estimate of β_{i} does not change depending on which other variables are in the model
- but this is seldom ever true
- when the columns of X are related to each other, we say they are collinear

Collinearity Example

- BPdat= read.delim("BPex.txt")
- measure blood pressure (BP), Age, Weight, body surface area (BSA), ...
- cor(BPdat)

				BSA			
	1.000000	$0.659093{ }^{\circ}$	-.950065	- 86587887		,	0.16390139
Age	0.6590930	1. 0000000	0.40734926	0.37845460	0.3437921	0.6187643	0.36822369
Weight	0.9500677	0.4073493	$1.0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	0.87530481	0.2006496	0.6593399	0.03435475
BSA	0.8658789	0.3784546	0.87530481	1. $0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	0.1305406	0.4648188	0.01844634
	0.2928336	0.3437921	0.20064959	0.13054001	1.0000000	0.4015144	1163982
lse	0.7214132	0.6187643	0.65933987	0.46481881	0.4015144	1. 0000000	0631008
tress	0.16	0.368	0.03435475	,	- 3116398	- 5063101	1.00000000

- $B P W=\operatorname{lm}(B P \sim$ Weight, data=BPdat)
- $\mathrm{BPBSA}=\operatorname{Im}(\mathrm{BP} \sim \mathrm{BSA}$, data=BPdat)
- $B P b o t h=\operatorname{Im}(B P \sim$ Weight $+B S A$, data=BPdat $)$

What happens

```
> summary(BPW) $coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.205305 8.66333119 0.2545563 8.019513e-01
Weight 1.200931 0.09297008 12.9173953 1.527885e-10
> summary(BPBSA)$coef
    Estimate Std. Error t value Pr(>|t|)
    (Intercept) 45.18326 9.391857 4.810897 1.400279e-04
BSA 34.44281 4.690245 7.343499 8.114254e-07
> summary(BPboth)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.653398 9.3924833 0.6019067 5.551796e-01
Weight 1.038734 0.1926583 5.3915869 4.870718e-05
BSA 5.831250 6.0626938 0.9618250 3.496199e-01
```

- the estimates depend on what variables are in the model
- BSA is hard to interpret

A medical example

- suppose we are interested in different measures of cholesterol in humans
- LDL, HDL and Triglycerides are all measured and important
- but they are correlated in most healthy individuals
- therefore it seldom makes sense to talk about a one unit change in LDL holding HDL constant.

Good sources

- https://onlinecourses.science.psu.edu/ stat501/node/2/
- has very good lessons and examples

