
Linear	Models	



Two	sample	tests	

•  tests	such	as	the	t-test	or	Wilcoxon	are	used	
to	compare	two	samples	

•  there	is	no	obvious	way	to	adjust	for,	or	
control	for	other	variables	

•  eg	we	might	want	to	adjust	for	age	and	sex	
when	comparing	gene	expression	values	
across	human	samples	

•  to	do	that	we	consider	more	general	
regression	models	



A	simple	experiment	
•  we	are	interested	in	comparing	gene	expression	between	two	groups	of	

people	(n=10	in	each	group)	
•  blood	is	drawn	and	baseline	for	RNA-seq	analysis	
•  participants	are	randomly	split	into	two	groups,		
•  Group	1	and	Group	2	

–  Group	1	goes	for	1	week	to	a	resort	at	an	altitude	of	5K	ft.	
–  Group	2	goes	for	1week	to	a	resort	at	sea	level	
–  both	groups	go	through	the	same	amount	of	exercise	and	are	given	the	same	

diet	
•  RNA	is	extracted		
•  we	sequence,	get	counts	and	want	to	compare	the	changes	in	gene	

expression	
–  so	we	have	20K	genes,	and	for	each	one	10	measurements	for	each	group	

•  careful	examination	of	the	data	suggests	that	we:	
–  add	one	to	the	counts	and	then	use	the	log	of	RNA	count	

•  that	we	model	difference	in	the	log	of	the	(counts	+	1)	pre	and	post	test	
•  we	consider	these	are	our	responses	(one	test	for	each	gene)	



The	t-test	as	linear	regression	
•  for	each	gene,	the	t-test	is	then	the	difference	in	means	between	

the	two	groups	divided	by	an	estimate	of	the	standard	error	

•  An	equivalent	form	of	the	t-test	for	two	samples	(compare	Group	1	
to	Group	2)	

–  where	xi	=	0	if	the	ith	person	is	in	Group	1	and	xi=1	if	the	ith	person	is	in	
Group	2	

–  and	ε∼Ν(0,σ2)
–  Ε[Y|X=0]	=	β0 =µ1

–  Ε[Y|X=1]	=	β0+β1=µ2	

•  So	a	test	of	β1=0,	is	the	same	as	the	t-test	that	the	means	in	the	
two	groups	are	the	same	

•  We	can	show	that	the	two	tests	are	identical	

€ 

ˆ µ 1 − ˆ µ 2
ˆ σ p

€ 

yi = β0 + β1xi +ε



Linear	Models	
•  the	main	reason	to	consider	the	linear	model	approach	
is	that	it	allows	us	to	easily	include	other	variables	

•  where	β2	could	be	sex	and	β3	could	be	age,	for	
example	

•  sex	could	be	encoded	as	1	for	Female,	0	Male,	then	β2	
will	be	the	mean	change	in	response	for	Females.	

•  β3	tells	us	the	mean	change	in	y	for	a	one	unit	change	
in	x	(could	be	years,	if	age	is	measured	in	years)

•  we	would	then	think	of	β1	as	the	effect	of	our	
treatment,	adjusted	for	age	and	sex	

€ 

yi = β0 + β1x1i + β2x2i + β3x3i +ε



Some	assumptions	

•  that	the	model	holds,	at	least	approximately	

•  that	the	response	y	is	linearly	associated	with	
the	x’s,	there	are	k	covariates	

•  that	the	errors	are	approximately	Normal	with	
approximately	constant	variance	(over	all	x’s)	

•  Anscombe	devised	a	simple	example	with	four	
different	sets	of	data,	but	where	the	estimates	
are	identical		[HW:	data(anscombe)….]	

yi = β0 +β1x1,i +β2x2,i + ...βk xk ,i +εi



Which	one	is	appropriate	for	linear	
regression	
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Anscombe's 4 Regression data sets



The	outputs:	



Caution	

•  lm	does	not	check	the	assumptions	of	the	
linear	model	–	nor	does	it	check	whether	the	
model	actually	fit	the	data	

•  that	is	YOUR	JOB!	
•  if	your	model	does	not	fit	the	data,	or	if	any	of	
the	assumptions	are	not	valid	then	the	
parameters	really	have	no	interpretation	

•  your	p-values	are	not	interpretable	



Some	special	cases	
•  Analysis	of	Variance:	ANOVA	models	

–  usually	refer	to	the	case	where	X	specifies	a	number	of	different	
groups	

–  typically	including	interactions	
•  eg:	we	want	to	study	the	yield	from	two	types	of	wheat,	in	two	

fields	
•  Y=β0+β1X1	+	β2X2	+	ε
•  where	X1	is	coded	0	for	Field	1	and	1	for	Field	2	
•  and	X2	is	coded	as	0	for	Type	1	and	1	for	Type	2	
•  so	β0	is	the	mean	yield	for	Field	1,	Type	1	
•  β0+β1	is	the	mean	yield	for	Field	2,	Type	1	
•  β0+β2	is	the	mean	yield	for	Field	1,	Type	2	
•  β0+β1+β2	is	the	mean	yield	for	Field	2,	Type	2		



ANOVA	
•  two	types	of	wheat,	two	fields	we	got	the	model	
•  Y=β0+β1X1	+	β2X2	+	ε

–  where	X1	is	coded	0	for	Field	1	and	1	for	Field	2	
–  and	X2	is	coded	as	0	for	Type	1	and	1	for	Type	2	

•  what	else	are	we	assuming	in	this	model?	
•  that	there	is	no	interaction!	that	the	effect	of	the	field	and	that	of	

the	type	of	wheat	are	the	same	
•  suppose	that	field	2	is	much	wetter	than	field	1	
•  and	suppose	that	Type	1	likes	dry	weather,	type	2	likes	more	

moisture	
•  we	can	model	this	by	adding	in	one	more	term	to	our	model	
•  Y=β0+β1X1	+	β2X2	+	β3X1X2+ε

–  here	β3	requires	both	X1	and	X2	to	be	1	
–  so	it	captures	those	data	points	for	Field	2	and	Type	2	simultaneously	



Mix	continuous	and	discrete	

•  income	as	a	function	of	age	(continuous)	and	
sex	(M/F)	

•  y	=	β0	+	β1	XA	+	β2	XM	+	β3	XA*XM	+	ε
– now	β1	is	the	effect	on	income	of	Age,	if	β1	is	
positive	then	income	increases	with	age	

– β2	is	the	effect	for	sex	(suppose	XM	=1	if	Male),	
then	that	represents	the	difference	between	
males	and	females	

– β3	is	the	interaction,	it	allows	the	slope	of	the	age	
relationship	to	be	different	for	men	and	women	



Interactions:	mean	income	by	age	
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•  In	the	top	panel	we	see	
two	parallel	lines	

•  the	effect	of	age	is	the	
same	for	both	sexes	

•  In	the	bottom	panel	the	
lines	diverge	

•  the	effect	of	sex	is	
different	for	each	age	

	



More	assumptions	
•  we	assume	that	the	X’s	are	measured	without	
error	(there	are	other	models,	errors-in-variables,	
that	can	be	used	)	

•  we	assume	that	the	y	measurements	are	
independent	
–  this	fails	when	we	measure	the	same	person	over	and	
over	(repeated	measures)	

–  it	fails	for	almost	all	mouse	experiments	(litter	effects,	
shared	cages	and	so	on)	

–  addressing	these	concerns	usually	requires	the	use	of	
so-called	random	effects	models,		or	mixed-effects	
models	



Modeling	in	R	

•  lm	is	the	main	function	
•  a	simple	example	from	Modern	Applied	Statistics,	
Chapter	6	(Venables	andRipley)	

•  library(MASS);	data(whiteside)	
•  the	data	consist	of	measurements	before	and	
after	Mr.	Whiteside	added	insulation	to	his	home	
– mean	temperature	in	degrees	C	for	the	week	
–  gas	consumption	for	the	week	
–  before	and	after	insulation	



Plot	the	data	
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Now	fit	some	models	

•  gasA	=	lm(Gas~Temp,	data=whiteside,	
subset=Insul==“Before”)	

•  gasB	=	lm(Gas~Temp,	data=whiteside,	
subset=Insul==“After”)	

•  summary(gasA)	

	



Model	before	

•  summary(gasB)	



Fit	them	together	
•  gasBA	=	lm(Gas	~	Insul/Temp	-	1,	data	=	
whiteside)	

•  summary(gasBA)	

•  the	parameter	estimates	are	the	same	
•  their	standard	errors	are	different	because	we	
are	now	estimating	them	jointly	

	

	



Explain	the	model	forumla	

•  lm(formula	=	Gas	~	Insul/Temp	-	1,	data	=	
whiteside)	

•  the	Insul/Temp:	says	fit	a	model	of	the	form	
1+Temp,	separately	for	each	level	of	Insul	

•  Insul	has	two	levels	(Before	and	After)	
•  the	last	term,		-1,	means	do	not	fit	an	overall	
intercept	

•  we	don’t	need	one	in	this	case	because	there	
is	a	separate	intercept	for	each	level	of	Insul	



Why	would	we	do	this?	

•  Why	would	we	want	to	combine	the	two	sets	
of	observations?	

•  Mostly	because,	if	they	error	terms	are	
roughly	similar	then	having	more	data	
improves	our	estimate	of	the	standard	error	
of	the	β’s	

•  this	improves	our	power	and	uses	all	of	our	
data	



Even	more	complicated	

•  	gasBA2	=	lm(Gas	~	Insul/(Temp	+	I(Temp^2))	-	
1,	data	=	whiteside)	

•  what	do	you	think	this	means?	
•  summary(gasBA2)$coef	



Things	to	notice	

•  when	we	added	the	terms	Temp^2	to	the	
model	we	could	test	for	linearity	

•  which	we	did	not	see	–	and	indeed	we	lost	the	
effects	for	Temp	altogether	

•  Why?	
•  Collinearity	and	its	effects	



Linear	Models	and	Collinearity	

•  the	easiest	models	to	interpret	are	those	
where	the	columns	of	X	are	orthogonal	to	
each	other	

•  in	that	case	the	estimate	of	βi	does	not	change	
depending	on	which	other	variables	are	in	the	
model	

•  but	this	is	seldom	ever	true	
•  when	the	columns	of	X	are	related	to	each	
other,	we	say	they	are	collinear	



Collinearity	Example	
•  BPdat=		read.delim("BPex.txt")	
– measure	blood	pressure	(BP),	Age,	Weight,	body	
surface	area	(BSA),	…	

•  cor(BPdat)	

•  BPW	=	lm(BP	~	Weight,	data=BPdat)			
•  BPBSA	=	lm(BP	~	BSA,	data=BPdat)		
•  	BPboth	=	lm(BP	~Weight	+	BSA,	data=BPdat)	



What	happens	

•  the	estimates	depend	on	what	variables	are	in	
the	model	

•  BSA	is	hard	to	interpret	



A	medical	example	

•  suppose	we	are	interested	in	different	measures	
of	cholesterol	in	humans	

•  LDL,	HDL	and	Triglycerides	are	all	measured	and	
important	

•  but	they	are	correlated	in	most	healthy	
individuals	

•  therefore	it	seldom	makes	sense	to	talk	about	a	
one	unit	change	in	LDL	holding	HDL	constant.	



Good	sources	

•  https://onlinecourses.science.psu.edu/
stat501/node/2/	

•  has	very	good	lessons	and	examples	


