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Abstract

Objective: To evaluate the use of hematocrit as a surrogate end point for survival among end-stage renal disease (ESRD) patients
treated with epoetin.

Study design and setting: Using United States Renal Data System (USRDS) data, we conducted an observational prospective study
to analyze the relationships among epoetin dose, hematocrit, and survival for 31,301 facility-based hemodialysis patients incident to ESRD
therapy in 1998. To address our objective, we used criteria developed by Prentice based on results from a Cox regression model.

Results: Results indicate that hematocrit is inversely associated with epoetin dose. For the same epoetin treatment-related achieved
hematocrit levels, there were widely varying treatment-related survival outcomes, thereby challenging a central criterion required to
empirically validate a surrogate end point.

Conclusion: Our results support earlier clinical trial and epidemiological data suggesting that hematocrit may not be a valid surrogate
for survival among the epoetin-treated renal failure population. We hypothesize that hematocrit may not be in the causal pathway or that
epoetin may have important mechanisms of action apart from increasing hematocrit. Effective treatment for anemia may therefore not be
simply a matter of increasing hematocrit. This study has potential implications for revising the existing treatment guidelines for anemia
management and selecting an appropriate treatment regimen. ! 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Anemia is a chronic comorbidity affecting nearly all end-
stage renal disease (ESRD) patients [1] and resulting in
reduced quality of life [2] and decreased survival rates [3].
In 1987, investigators reported successful use of recombinant
human erythropoietin (epoetin, or EPO) in treating the
anemia of ESRD patients. By 2000, more than 90% of in-
center hemodialysis patients received epoetin treatment for
their anemia (Fig. 40 in [4]). In their review of progress
made in the management of anemia, the National Institute
of Diabetes and Digestive and Kidney Diseases (NIDDK)

* Corresponding author. Tel.: (301) 652-4005; fax: (301) 652-8335.
E-mail address: dcott@mtppi.org (D.J. Cotter).
The data reported here have been supplied by the United States Renal
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cited a relationship between improved hematocrit levels and
mortality, stating that “subsequent studies have shown that
increasing patients’ hematocrits with EPO decreases mortal-
ity and improves quality of life” [5]. Given this perceived
relationship, the use of hematocrit as a surrogate for guiding
epoetin treatment among chronic renal failure patients re-
ceiving epoetin is widely accepted among nephrologists
[3,6–8]. Furthermore, given the difficulty of studying the
true clinical outcome (i.e., survival), it is not surprising
that the pivotal Phase III epoetin trials to obtain U.S. Food
and Drug Administration (FDA) approval implicitly used he-
matocrit as a surrogate end point [9].

Although there is a paucity of clinical trials examining
the causal effect of epoetin on mortality, the existing data
support our contention that hematocrit may not be a valid
surrogate for survival among epoetin-treated renal failure
patients. In one narrowly focused clinical trial among ESRD
patients with cardiovascular complications, the normalized
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Why graphics?

1. To explore data (interactively) 
2. To communicate data & preliminary insights 

with collaborators  
3. To publish results



Goals for this lecture
•Review base R plotting 
•Understand the grammar of graphics concept 
• Introduce ggplot2's ggplot function 
•See how to plot 1D, 2D, 3-5D data and understand 

faceting 
•Visualisation for quickling viewing large datasets and 

discover large-scale trends (e.g. batch effects) 
•Use colours like a pro



Base R plotting
Canvas model: a series 

of instructions that 
sequentially fill the 
plotting canvas
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• Create beautiful and intuitive plots for scientific presentations and publica-
tions

4.2 Built-in R Plotting

R has built-in plotting functions that can be used to quickly and easily visualize
data. ●●
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Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

## Run conc density

## 1 1 0.0488 0.017

## 2 1 0.0488 0.018

## 3 1 0.1953 0.121

## 4 1 0.1953 0.124

## 5 1 0.3906 0.206

## 6 1 0.3906 0.215

plot(DNase$conc, DNase$density) 0 2 4 6 8 10 12
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other
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Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

## Run conc density

## 1 1 0.0488 0.017

## 2 1 0.0488 0.018

## 3 1 0.1953 0.121

## 4 1 0.1953 0.124

## 5 1 0.3906 0.206

## 6 1 0.3906 0.215

plot(DNase$conc, DNase$density) 0 2 4 6 8 10 12
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other

ZUSE Plotter Z64 (presented in 1961).



Base R plotting
Canvas model: a series 

of instructions that 
sequentially fill the 
plotting canvas

62 MODERN STATISTICS FOR MODERN BIOLOGY

• Create beautiful and intuitive plots for scientific presentations and publica-
tions

4.2 Built-in R Plotting

R has built-in plotting functions that can be used to quickly and easily visualize
data. ●●
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Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

## Run conc density

## 1 1 0.0488 0.017

## 2 1 0.0488 0.018

## 3 1 0.1953 0.121

## 4 1 0.1953 0.124

## 5 1 0.3906 0.206

## 6 1 0.3906 0.215
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other
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The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other
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The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.
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Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other

ZUSE Plotter Z64 (presented in 1961).

Drawbacks: 
• Layout choices have to be made at the beginning with no 

overview over what may still be coming 
• Different functions for different plot types, with different 

interfaces 
• Many routine tasks require a lot of ‘boilerplate’ code 
• No concept of facets / lattices  
• No concept of viewports, only a single global coordinate 

system 
• Default colours are poor 
• Resizing often leads to unsatisfactory results
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along the x-axis and the sizes along the�-axis. Finally, we provided the argument
stat = "identity" (in other words, do nothing) to the geom_bar function, since
otherwise it would try to compute a histogram of the data (the default value of stat
is "count"). stat is short for statistic, which is what we call any function of data.
The identity statistic just returns the data themselves, but there are other more
interesting statistics, such as binning, smoothing, averaging, taking a histogram, or
other operations that summarize the data in some way.
Question 3.4.1
Flip the x - and�-aesthetics to produce a horizontal barplot.
These concepts –data, geometrical objects, statistics– are some of the ingredients

of the grammar of graphics, just as nouns, verbs and adverbs are ingredients of an
English sentence.
The plot in Figure 3.7 is not bad, but there are several potential improvements.

We can use colour for the bars to help us quickly see which bar corresponds to which
group. This is particularly useful if we use the same colour scheme in several plots. To
this end, let’s define a named vector groupColour that contains our desired colours
for each possible value of sampleGroup10. 10 The information is completely equivalent to

that in the sampleGroup and colour columns
of the data.frame groups, we’re just adapting to
the fact that ggplot2 expects this information in
the form of a named vector.

groupColour = setNames(groups$colour, groups$sampleGroup)

Another thing that we need to fix is the readability of the bar labels. Right now
they are running into each other — a common problem when you have descriptive
names.

ggplot(groups, aes(x = sampleGroup, y = n, fill = sampleGroup)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = groupColour, name = "Groups") +
theme(axis.text.x = element_text(angle = 9�, hjust = 1))
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Figure 3.8: Similar to Figure 3.7, but with coloured
bars and better bar labels.

Let’s dissect the above "sentence". We added an argument, fill to the aes func-
tion that states that we want the bars to be coloured (filled) based on sampleGroup
(which in this case co-incidentally is also the value of the x argument, but that need
not be so). Furthermore we added a call to the scale_fill_manual function, which
takes as its input a colour map – i. e., the mapping from the possible values of a vari-
able to the associated colours – as a named vector. We also gave this colour map a
title (note that in more complex plots, there can be several di�erent colour maps
involved). Had we omitted the call to scale_fill_manual, ggplot2 would have used
its choice of default colours. We also added a call to theme stating that we want the
x-axis labels rotated by 90 degrees, and right-aligned (hjust; the default would be to
center it).

3.5 The Grammar of Graphics

The components of ggplot2’s grammar of graphics are
1. a dataset
2. one or more geometric objects that serve as the visual representations of the data –
for instance, points, lines, rectangles, contours

3. a description of how the variables in the data are mapped to visual properties (aes-
thetics) of the geometric objects, and an associated scale (e. g., linear, logarithmic,

The grammar of graphics
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bars and better bar labels.

Let’s dissect the above "sentence". We added an argument, fill to the aes func-
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(which in this case co-incidentally is also the value of the x argument, but that need
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3.5 The Grammar of Graphics

The components of ggplot2’s grammar of graphics are
1. a dataset
2. one or more geometric objects that serve as the visual representations of the data –
for instance, points, lines, rectangles, contours

3. a description of how the variables in the data are mapped to visual properties (aes-
thetics) of the geometric objects, and an associated scale (e. g., linear, logarithmic,

The components of ggplot2's grammar of graphics are 
• one or more datasets (“noun”), 
• one or more geometric objects that serve as the visual represen-tations of the data, for 

instance, points, lines, rectangles, contours (“verb”), 
• descriptions of how the variables in the data are mapped to visual properties (aesthetics) 

of the geometric objects, and an associated scale (e.g. linear, logarithmic, rank), 
• one or more coordinate systems, 
• statistical summarization rules (e.g. line fit, binning), 
• a facet specification, i.e. multiple similar subplots to look at subsets of the same data, 
• optional parameters for layout and rendering, e.g., 

text size, font, alignment; legend positions



1999

A Layered Grammar of 
Graphics 
Hadley Wickham 
Journal of Computational and 
Graphical Statistics, 2010 
Volume 19, Number 1, Pages 3–28 
DOI: 10.1198/jcgs.2009.07098



Layers

68 MODERN STATISTICS FOR MODERN BIOLOGY

is the data format that ggplot2 functions most easily take as input (more on
this in Sections ?? and ??).

We can further enhance the plot by using colours – since each of the
points in Figure ?? corresponds to one sample, it makes sense to use the
sampleColour information in the object x.

ggplot( dftx, aes( x = X1426642_at, y = X1418765_at )) +

geom_point( aes( colour = sampleColour), shape = 19 ) +

geom_smooth( method = "loess" ) +

scale_colour_discrete( guide = FALSE )

Question 4.5.1 In the code above we defined the colour aesthetics (aes)
only for the geom_point layer, while we defined the x and y aesthetics for
all layers. What happens if we set the colour aesthetics for all layers, i. e.,
move it into the argument list of ggplot? What happens if we omit the call to
scale_colour_discrete?

Question 4.5.2 Is it always meaningful to summarize scatterplot data with a
regression line as in Figures ?? and ???

As a small side remark, if we want to find out which genes are targeted by
these probe identifiers, and what they might do, we can call4. 4 Note that here were need to use the orig-

inal feature identifiers (e. g., “1426642_at”,
without the leading “X”). These is the nota-
tion used by the microarray manufacturer,
by the Bioconductor annotation packages,
and also inside the object x. The leading
“X” that we used above when working with
dftx was inserted during the creation
of dftx by the data.frame, since its ar-
gument check.names is set to TRUE by
default. Alternatively, we could have kept
the original identifer notation by setting
check.names=FALSE, but then we would
need to work with the backticks, such as
aes( x = ‘1426642_at‘, ...), to make
sure R understands them correctly.

library("mouse4302.db")

AnnotationDbi::select(mouse4302.db,

keys = c("1426642_at", "1418765_at"), keytype = "PROBEID",

columns = c("SYMBOL", "GENENAME"))

## PROBEID SYMBOL

## 1 1426642_at Fn1

## 2 1418765_at Timd2

## GENENAME

## 1 fibronectin 1

## 2 T cell immunoglobulin and mucin domain containing 2

Often when using ggplot you will only need to specify the data, aesthet-
ics, a geometric object, and labels (through the scale parameters). Most
geometric objects implicitly call a suitable default statistical summary of the
data, and vice versa. For example, if you are using geom_histogram, ggplot2
implicitly bins your data and displays the results in barplot (geom_bar) format.
Thus, you could equivalently plot your histogram by calling geom_bar with
stat_bin.
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Figure 4.11: Two different ways of creating
the same histogram using the grammar of
graphics.

dfx <- as.data.frame(exprs(x))

p1 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +

geom_histogram(binwidth = 0.2)

p2 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +
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Figure 4.8: Fixing the barplot names through
rotation of the labels.

We have added on another clause, produced by the theme function, which
indicates that we like x-axis text set at an angle of 90 degrees and right
justified (hjust; the default would be to center it).

Now we have a great looking plot that clearly conveys our data on the
number of samples in each group and also the types of groups that we are
comparing.

4.5 The Grammar of Graphics
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Figure 4.9: A scatterplot with three layers
that show different statistics of the same
data: points, a smooth regression line, and a
confidence band.

The components of ggplot2’s grammar of graphics are

1. a dataset
2. a choice of geometric object that serves as the visual representations of

the data – for instance, points, lines, rectangles, contours
3. a description of how the variables in the data are mapped to visual proper-

ties (aesthetics) of the geometric objects, and an associated scale, (e. g.,
linear, logarithmic, rank)

4. a statistical summarisation rule
5. a coordinate system
6. a facet specification, i. e. the use of several plots to look at the same data
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Figure 4.10: As Figure ??, but in addition
with points coloured by the sample group
(as in Figure ??). We can now see that the
expression values of the gene Timd2 (whose
mRNA is targeted by the probe 1418765_at)
are consistently high in the early time points,
whereas its expression goes down in the
EPI samples at days 3.5 and 4.5. In the
FGF4-KO, this decrease is delayed - at E3.5,
its expression is still high. Conversely, the
gene Fn1 (1426642_at) is off in the early
timepoints and then goes up at days 3.5 and
4.5. The PE samples (green) show a high
degree of cell-to-cell variability.

In the examples above, Figures ??–??, the dataset was groupsize, the
variables were the numeric values as well as the names of groupsize,
which we mapped to the aesthetics y-axis and x-axis respectively, the scale
was linear on the y and rank-based on the x-axis (the bars are ordered
alphanumerically and each has the same width), the geometric object was the
rectangular bar, and the statistical summary was the trivial one (i. e., none).
We did not make use of a facet specification in the plots above, but we’ll see
examples later on (Section ??).

In fact, ggplot2’s implementation of the grammar of graphics allows you to
use the same type of component multiple times, in what are called layers?.
For example, the code below uses three types of geometric objects in the
same plot, for the same data: points, a line, and a confidence band.

dftx <- data.frame(t(exprs(x)), pData(x))

ggplot( dftx, aes( x = X1426642_at, y = X1418765_at)) +

geom_point( shape = 1 ) +

geom_smooth( method = "loess" )

We assembled a copy of the expression data (exprs(x)) and the sample
annotation data (pData(x)) all together into the data.frame dftx – since this



A more complex example: themes

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

## Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")
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Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")
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Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we
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barplot with polar coordinates.

Note above that we can override previously set theme parameters by
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No geom defined yet!
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library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

## Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")
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Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.
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Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

No geom defined yet!
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this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.
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For now we have simply created a plot object pb and have not generated a
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Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we
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## 3 1425463_at 1 E3.25 5.50

## 4 1416967_at 1 E3.25 1.73

## 5 1420085_at 2 E3.25 9.29

## 6 1418863_at 2 E3.25 5.53

For good measure, we also add a column that provides the gene symbol
along with the probe identifiers.

genes$gene <- names(probes)[ match(genes$probe, probes) ]

4.6.2 Barplots

A popular way to display data such as in our data.frame genes is through
barplots. See Fig. ??.

ggplot(genes, aes( x = gene, y = value)) +

stat_summary(fun.y = mean, geom = "bar")
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Figure 4.14: Barplots showing the means
of the distributions of expression measure-
ments from 4 probes.

In Figure ??, each bar represents the mean of the values for that gene.
Such plots are seen a lot in the biological sciences, as well as in the popular
media. The data summarisation into only the mean looses a lot of information,
and given the amount of space it takes, a barplot can be a poor way to
visualise data8.

8 In fact, if the mean is an appropriate
summary, such as for highly skewed
distributions, or data sets with outliers, the
barplot can be outright misleading.

Sometimes we want to add error bars, and one way to achieve this in
ggplot2 is as follows.

library("Hmisc")

ggplot(genes, aes( x = gene, y = value, fill = gene)) +

stat_summary(fun.y = mean, geom = "bar") +

stat_summary(fun.data = mean_cl_normal, geom = "errorbar",

mult = 1, width = 0.25)

Here, we see again the principle of layered graphics:fig: we use two sum-
mary functions, mean and mean_cl_normal, and two associated geometric
objects, bar and errorbar. The function mean_cl_normal is from the Hmisc
package and computes the standard error (or confidence limits) of the mean;
it’s a simple function, and we could also compute it ourselves using base R
expressions if we wished to do so. We also coloured the bars in lighter colours
for better contrast.
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Figure 4.15: Barplots with error bars
indicating standard error of the mean.

4.6.3 Boxplots

It’s easy to show the same data with boxplots.
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summary, such as for highly skewed
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barplot can be outright misleading.

Sometimes we want to add error bars, and one way to achieve this in
ggplot2 is as follows.

library("Hmisc")

ggplot(genes, aes( x = gene, y = value, fill = gene)) +

stat_summary(fun.y = mean, geom = "bar") +

stat_summary(fun.data = mean_cl_normal, geom = "errorbar",

mult = 1, width = 0.25)

Here, we see again the principle of layered graphics:fig: we use two sum-
mary functions, mean and mean_cl_normal, and two associated geometric
objects, bar and errorbar. The function mean_cl_normal is from the Hmisc
package and computes the standard error (or confidence limits) of the mean;
it’s a simple function, and we could also compute it ourselves using base R
expressions if we wished to do so. We also coloured the bars in lighter colours
for better contrast.
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4.6.3 Boxplots

It’s easy to show the same data with boxplots.
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p <- ggplot(genes, aes( x = gene, y = value, fill = gene))

p + geom_boxplot()
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Figure 4.16: Boxplots.

Compared to the barplots, this takes a similar amount of space, but is
much more informative. In Figure ?? we see that two of the genes (Gata4,
Gata6) have relatively concentrated distributions, with only a few data points
venturing out to the direction of higher values. For Fgf4, we see that the
distribution is right-skewed: the median, indicated by the horizontal black bar
within the box is closer to the lower (or left) side of the box. Analogously, for
Sox2 the distribution is left-skewed.

4.6.4 Violin plots

A variation of the boxplot idea, but with an even more direct representation
of the shape of the data distribution, is the violin plot. Here, the shape of the
violin gives a rough impression of the distribution density.

p + geom_violin()
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Figure 4.17: Violin plots.

4.6.5 Dot plots and beeswarm plots

If the number of data points is not too large, it is possible to show the data
points directly, and it is good practice to do so, compared to using more
abstract summaries.

However, plotting the data directly will often lead to overlapping points,
which can be visually unpleasant, or even obscure the data. We can try to
layout the points so that they are as near possible to their proper locations
without overlap?.

p + geom_dotplot(binaxis = "y", binwidth = 1/6,

stackdir = "center", stackratio = 0.75,

aes(color = gene))

The plot is shown in the left panel of Figure ??. The y-coordinates of the
points are discretized into bins (above we chose a bin size of 1/6), and then
they are stacked next to each other.

A fun alternative is provided by the package beeswarm. It works with base
R graphics and is not directly integrated into ggplot2’s data flows, so we can
either use the base R graphics output, or pass on the point coordinates to
ggplot as follows.

library("beeswarm")

bee <- beeswarm(value ~ gene, data = genes, spacing = 0.7)
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p <- ggplot(genes, aes( x = gene, y = value, fill = gene))

p + geom_boxplot()
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Figure 4.16: Boxplots.

Compared to the barplots, this takes a similar amount of space, but is
much more informative. In Figure ?? we see that two of the genes (Gata4,
Gata6) have relatively concentrated distributions, with only a few data points
venturing out to the direction of higher values. For Fgf4, we see that the
distribution is right-skewed: the median, indicated by the horizontal black bar
within the box is closer to the lower (or left) side of the box. Analogously, for
Sox2 the distribution is left-skewed.

4.6.4 Violin plots

A variation of the boxplot idea, but with an even more direct representation
of the shape of the data distribution, is the violin plot. Here, the shape of the
violin gives a rough impression of the distribution density.

p + geom_violin()
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Figure 4.17: Violin plots.

4.6.5 Dot plots and beeswarm plots

If the number of data points is not too large, it is possible to show the data
points directly, and it is good practice to do so, compared to using more
abstract summaries.

However, plotting the data directly will often lead to overlapping points,
which can be visually unpleasant, or even obscure the data. We can try to
layout the points so that they are as near possible to their proper locations
without overlap?.

p + geom_dotplot(binaxis = "y", binwidth = 1/6,

stackdir = "center", stackratio = 0.75,

aes(color = gene))

The plot is shown in the left panel of Figure ??. The y-coordinates of the
points are discretized into bins (above we chose a bin size of 1/6), and then
they are stacked next to each other.

A fun alternative is provided by the package beeswarm. It works with base
R graphics and is not directly integrated into ggplot2’s data flows, so we can
either use the base R graphics output, or pass on the point coordinates to
ggplot as follows.

library("beeswarm")

bee <- beeswarm(value ~ gene, data = genes, spacing = 0.7)
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ggplot(bee, aes( x = x, y = y, colour = x.orig)) +

geom_point(shape = 19) + xlab("gene") + ylab("value") +

scale_fill_manual(values = probes)
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Figure 4.18: Left: dot plots, made us-
ing geom_dotplot from ggplot2. Right:
beeswarm plots, with layout obtained via
the beeswarm package and plotted as a
scatterplot with ggplot.

The plot is shown in the right panel of Figure ??. The default layout method
used by beeswarm is called swarm. It places points in increasing order. If a
point would overlap an existing point, it is shifted sideways (along the x-axis)
by a minimal amount sufficient to avoid overlap.

As you have seen in the above code examples, some twiddling with layout
parameters is usually needed to make a dot plot or a beeswarm plot look good
for a particular dataset.

4.6.6 Density plots

Yet another way to represent the same data is by lines plots of the density
plots

ggplot(genes, aes( x = value, colour = gene)) + geom_density()

Density estimation has a number of complications, and you can see these
in Figure ??. In particular, the need for choosing a smoothing window. A
window size that is small enough to capture peaks in the dense regions of
the data may lead to instable (“wiggly”) estimates elsewhere; if the window
is made bigger, pronounced features of the density may be smoothed out.
Moreover, the density lines do not convey the information on how much data
was used to estimate them, and plots like Figure ?? can become especially
problematic if the sample sizes for the curves differ.
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Figure 4.19: Density plots.
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ggplot(bee, aes( x = x, y = y, colour = x.orig)) +

geom_point(shape = 19) + xlab("gene") + ylab("value") +

scale_fill_manual(values = probes)
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Figure 4.18: Left: dot plots, made us-
ing geom_dotplot from ggplot2. Right:
beeswarm plots, with layout obtained via
the beeswarm package and plotted as a
scatterplot with ggplot.

The plot is shown in the right panel of Figure ??. The default layout method
used by beeswarm is called swarm. It places points in increasing order. If a
point would overlap an existing point, it is shifted sideways (along the x-axis)
by a minimal amount sufficient to avoid overlap.

As you have seen in the above code examples, some twiddling with layout
parameters is usually needed to make a dot plot or a beeswarm plot look good
for a particular dataset.

4.6.6 Density plots

Yet another way to represent the same data is by lines plots of the density
plots

ggplot(genes, aes( x = value, colour = gene)) + geom_density()

Density estimation has a number of complications, and you can see these
in Figure ??. In particular, the need for choosing a smoothing window. A
window size that is small enough to capture peaks in the dense regions of
the data may lead to instable (“wiggly”) estimates elsewhere; if the window
is made bigger, pronounced features of the density may be smoothed out.
Moreover, the density lines do not convey the information on how much data
was used to estimate them, and plots like Figure ?? can become especially
problematic if the sample sizes for the curves differ.
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Figure 4.19: Density plots.
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4.6.7 ECDF plots

The mathematically most robust way to describe the distribution of a one-
dimensional random variable X is its cumulative distribution function (CDF),
i. e., the function

F(x) = P(X  x), (4.1)

where x takes all values along the real axis. The density of X is then the
derivative of F, if it exists9. The definition of the CDF can also be applied 9 By its definition, F tends to 0 for small x

(x ! �•) and to 1 for large x (x ! +•).to finite samples of X, i. e., samples x1, . . . , xn. The empirical cumulative
distribution function (ECDF) is simply

Fn(x) =
1
n

n

Â
i=1

xxi . (4.2)

An important property is that even for limited sample sizes n, the ECDF Fn

is not very far from the CDF, F. This is not the case for the empirical density!
Without smoothing, the empirical density of a finite sample is a sum of Dirac
delta functions, which is difficult to visualize and quite different from any
underlying smooth, true density. With smoothing, the difference can be less
pronounced, but is difficult to control, as discussed above.

ggplot(genes, aes( x = value, colour = gene)) + stat_ecdf()
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Figure 4.20: Empirical cumulative distribution
functions (ECDF).

4.6.8 Data tidying II - Wide vs long format

Let us revisit the melt command from above. In the resulting data.frame
genes, each row corresponds to exactly one measured value, stored in the
column value. Then there are additional columns probe and sample, which
store the associated covariates. Compare this to the following data.frame (for
space reasons we print only the first five columns):

as.data.frame(exprs(x)[probes, ])[, 1:5]

## 1 E3.25 2 E3.25 3 E3.25 4 E3.25 5 E3.25

## 1420085_at 3.03 9.29 2.94 9.72 8.92

## 1418863_at 4.84 5.53 4.42 5.98 4.92

## 1425463_at 5.50 6.16 4.58 4.75 4.63

## 1416967_at 1.73 9.70 4.16 9.54 8.71

This data.frame has several columns of data, one for each sample (an-
notated by the column names). Its rows correspond to the four probes,
annotated by the row names. This is an example for a data table in wide
format.

Now suppose we want to store somewhere not only the probe identifiers
but also the associated gene symbols. We could stick them as an additional



1D plot types
Boxplot makes sense for unimodal distributions  
Histogram requires definition of bins (width, positions) and can 

create visual artifacts esp. if the number of data points is not large 
Density requires the choice of bandwidth; obscures the sample size 

(i.e. the uncertainty of the estimate) 
ecdf does not have these problems; but is more abstract and 

interpretation requires more training. Good for reading off quantiles 
and shifts in location in comparative plots; OK for detecting 
differences in scale; less good for detecting multimodality. 

Up to a few dozens of points - just show the data! (beeswarm)
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information on how much data was used to estimate them, and plots like Figure 3.21
can be especially problematic if the sample sizes for the curves di�er.

0

20

40

60

−2 −1 0 1 2
sx

in
de

x

Figure 3.22: Sorted values of simdata versus
their index. This is the empirical cumulative
distribution function of simdata.

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0 12.5
value

y

gene
Fgf4

Gata4

Gata6

Sox2

Figure 3.23: Empirical cumulative distribution
functions (ECDF).

3.6.6 ECDF plots

The mathematically most convenient way to describe the distribution of a one-
dimensional random variableX is its cumulative distribution function (CDF), i. e.,
the function defined by

F (x) = P(X  x), (3.1)

where x takes all values along the real axis. The density ofX is then the derivative of
F , if it exists13. The finite sample version of the probability (3.1) is called the empiri-

13 By its definition, F tends to 0 for small x
(x ! �1) and to 1 for large x (x ! +1).

cal cumulative distribution function (ECDF),

Fn(x) =
number of i for which xi  x

n
=
1
n

nX

i=1
(x  xi ), (3.2)

where x1, . . . ,xn denote a sample of n draws fromX and is the indicator function,
i.e., the function that takes the value 1 if the expression in its argument is true and 0
otherwise. If this sounds abstract, we can get a perhaps more intuitive understanding
from the following simple example (Figure 3.22):
simdata = rnorm(70)
tibble(index = seq(along = simdata),

sx = sort(simdata)) %>%

ggplot(aes(x = sx, y = index)) + geom_step()

Plotting the sorted values against their ranks gives the essential features of the
ECDF. The ECDFs of our data are shown in Figure 3.23.
ggplot(genes, aes( x = value, color = gene)) + stat_ecdf()

The ECDF has several nice properties:

• It is lossless: the ECDF Fn(x) contains all the information contained in the original
sample x1, . . . ,xn , except for the order of the values, which is assumed to be
unimportant.

• As n grows, the ECDF Fn(x) converges to the true CDF F (x). Even for limited sam-
ple sizes n, the di�erence between the two functions tends to be small. Note that
this is not the case for the empirical density! Without smoothing, the empiri-
cal density of a finite sample is a sum of Dirac delta functions, which is di�cult
to visualize and quite di�erent from any underlying smooth, true density. With
smoothing, the di�erence can be less pronounced, but is di�cult to control, as we
discussed above.

3.6.7 The effect of transformations on densities

It is tempting to look at histograms or density plots and inspect them for evidence of
bimodality (or multimodality) as an indication of some underlying biological phe-
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ple sizes n, the di�erence between the two functions tends to be small. Note that
this is not the case for the empirical density! Without smoothing, the empiri-
cal density of a finite sample is a sum of Dirac delta functions, which is di�cult
to visualize and quite di�erent from any underlying smooth, true density. With
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Thesemethods use a handful of parameters: an average overallmutation
frequency for a cancer type; and a few parameters about the relative
frequencies of different categories of mutations (small insertions/
deletions and transitions versus transversions at CpG dinucleotides,
other C:G base pairs and A:T base pairs). Average values of these
parameters are typically estimated from the samples under study.
Various efforts, by us and others, have recently began to incorporate
sample-specific mutation rates into the analysis3,9.
We proposed that the problemmight be due to heterogeneity in the

mutational processes in cancer.Whereas it is obvious that assuming an
average mutation frequency that is too low will lead to spuriously
significant findings, it is less well appreciated that using the correct
average rate but failing to account for heterogeneity in the mutational
process can also lead to incorrect results. To illustrate this point, we
compared two simple scenarios both sharing the same average muta-
tion frequency: (1) a constant frequency of 10 mutations per Mb (10/
Mb) across all genes, versus (2) frequencies of 4/Mb, 8/Mb and 20/Mb
in 25%, 50% and 25% of genes, respectively (Supplementary Fig. 1). If
the second case is analysed under the erroneous assumption of a
constant rate, many of the highlymutable genes will falsely be declared
to be associated with cancer. Notably, the problem grows with sample
size: because the threshold for statistical significance decreases with
sample size, modest deviations due to an erroneousmodel are declared
significant. For the same reason, the problem is alsomore pronounced
in tumour typeswith highermutation rates.Heterogeneity inmutation
frequencies across patients can also lead to inaccurate results, including
the potential to produce both false-positive, as described earlier, and
false-negative results if the baseline frequency is overestimated.
We therefore set out to study heterogeneity in mutation rates, using

a data set of 3,083 tumour–normal pairs across 27 tumour types, for
which the whole-exome sequence was available for 2,957 and the
whole-genome sequence was available for 126 (Supplementary Table 2).
Approximately 92% of the samples were sequenced at the Broad
Institute and thus were processed using a uniform experimental and
analytical pipeline (see Methods). In this data set, an average of 30Mb

of coding sequence per sample was covered to adequate depth for
mutation detection, yielding a total of 373,909non-silent codingmuta-
tions or an average of 4.0/Mb per sample (median of 44 non-silent
coding mutations per sample, or 1.5/Mb).
We analysed three types of heterogeneity, with the aim of achieving

more accurate detection of cancer-associated genes. First, we analysed
heterogeneity across patients with a given cancer type. Analysis of the
27cancer types revealed that themedian frequencyofnon-synonymous
mutations varied by more than 1,000-fold across cancer types (Fig. 1).
About half of the variation in mutation frequencies (measured on a
logarithmic scale) can be explained by tissue type of origin. Paediatric
cancers showed frequencies as low as 0.1/Mb (approximately one
change across the entire exome), whereas at the opposite extreme,
melanoma and lung cancer exceeded 100/Mb. The highest mutation
frequencies are in some cases attributable to extensive exposure to well
known carcinogens, such as ultraviolet radiation in the case of mela-
noma and tobacco smoke in the case of lung cancers.
More surprisingly, mutation frequencies varied markedly across

patients within a cancer type. In melanoma and lung cancer, the fre-
quency ranged across 0.1–100/Mb. Despite the low median frequency
in acute myeloid leukaemia (AML; 0.37/Mb), the patient-specific fre-
quencies similarly spanned three orders ofmagnitude, from0.01 to 10/
Mb.Variationmay in some cases be due to key biological factors, such as
melanomas not attributed to ultraviolet exposure or on unexposed skin,
colon cancers with or without mismatch repair defects3, or head and
neck tumours with viral or non-viral origin5 (Supplementary Fig. 2).
Second, after analysing total mutation frequency, we analysed het-

erogeneity in themutational spectrumof the tumours. Startingwith all
96 possible mutations (12 mutations at a base times 16 possible flank-
ing bases, then collapsed by strand symmetry), we used non-negative
matrix factorization (NMF) to reduce the dimensionality, with each
spectrum represented as a linear combination of six basic spectra
(Methods). We represented the mutational spectrum of each tumour
on a circular plot, with distance from the origin representing total
mutation rate and angle representing the relative contribution of the
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Figure 1 | Somatic mutation frequencies observed in exomes from 3,083
tumour–normal pairs. Each dot corresponds to a tumour–normal pair, with
vertical position indicating the total frequency of somatic mutations in the
exome. Tumour types are ordered by their median somatic mutation
frequency, with the lowest frequencies (left) found in haematological and
paediatric tumours, and the highest (right) in tumours induced by carcinogens

such as tobacco smoke and ultraviolet light. Mutation frequencies vary more
than 1,000-fold between lowest and highest across different cancers and also
within several tumour types. The bottom panel shows the relative proportions
of the six different possible base-pair substitutions, as indicated in the legend on
the left. See also Supplementary Table 2.
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Mutational heterogeneity in cancer and the search
for new cancer-associated genes
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Scott L. Carter1, Chip Stewart1, CraigH.Mermel1,5, StevenA.Roberts6, AdamKiezun1, Peter S.Hammerman1,2, AaronMcKenna1,7,
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Catherine J. Wu2,3, Jorge Melendez-Zajgla12, Alfredo Hidalgo-Miranda12, Amnon Koren1,3, Steven A. McCarroll1,3, Jaume Mora13,
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Major international projects are underway that are aimed at creating
a comprehensive catalogue of all the genes responsible for the ini-
tiation and progression of cancer1–9. These studies involve the
sequencing of matched tumour–normal samples followed bymath-
ematical analysis to identify those genes in which mutations occur
more frequently than expected by random chance.Here we describe
a fundamental problem with cancer genome studies: as the sample
size increases, the list of putatively significant genes produced by
current analytical methods burgeons into the hundreds. The list
includes many implausible genes (such as those encoding olfactory
receptors and the muscle protein titin), suggesting extensive false-
positive findings that overshadow true driver events. We show that
this problem stems largely frommutational heterogeneity andprovide
anovel analyticalmethodology,MutSigCV, for resolving theproblem.
We applyMutSigCV to exome sequences from3,083 tumour–normal
pairs and discover extraordinary variation in mutation frequency
and spectrum within cancer types, which sheds light on mutational
processes and disease aetiology, and in mutation frequency across
the genome, which is strongly correlated with DNA replication
timing and also with transcriptional activity. By incorporating
mutational heterogeneity into the analyses, MutSigCV is able to
eliminate most of the apparent artefactual findings and enable the
identification of genes truly associated with cancer.
Recent cancer genome studies have led to the identification of scores

of cancer-associated genes in glioblastoma1, ovarian2, colorectal3, lung4,
head and neck5, multiple myeloma6, chronic lymphocytic leukaemia7,
diffuse large B-cell lymphoma (DLBCL)8,9 and many other cancers.
Studies are nowunderway throughTheCancerGenomeAtlas (TCGA)
(http://cancergenome.nih.gov/) and the International Cancer Genome
Consortium (http://www.icgc.org/) to create a comprehensive cata-
logue of significantly mutated genes across all major cancer types.
The expectation has been that larger sample sizes will increase the

power both to detect true cancer driver genes (sensitivity) and todistin-
guish them from the background of random mutations (specificity).
Alarmingly, recent results seem to show the opposite phenomenon:with
large sample sizes, the list of apparently significant cancer-associated
genes grows rapidly and implausibly. For example, when we applied
current analytical methods to whole-exome sequence data from 178

tumour–normal pairs of lung squamous cell carcinoma10, a total of 450
genes (Supplementary Table 1 and Supplementary Methods 2) were
found to be mutated at a significant frequency (false-discovery rate
q, 0.1). Although the list contains some genes known to be associated
with cancer, many of the genes seem highly suspicious on the basis of
their biological function or genomic properties. Almost a quarter (101/
450) of the putative significant genes encode olfactory receptors. The
list is also highly enriched for genes encoding extremely large proteins,
including more than one-fifth of the 83 genes encoding proteins with
.4,000 amino acids (P, 10211, Fisher’s exact test). These include the
two longest human proteins, the muscle protein titin (36,800 amino
acids) and the membrane-associated mucin MUC16 (14,500 amino
acids), as well as another mucin (MUC4), cardiac ryanodine receptors
(RYR2,RYR3), cytoskeletal dyneins (DNAH5,DNAH11) and the neur-
onal synaptic vesicle protein piccolo (PCLO). The prominence of these
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because the statistical tests already account for the larger target size.
Furthermore, the list also contains genes with very long introns, includ-
ing one-sixth of the 73 genes spanning a genomic region of.1 mega-
base (Mb) (P, 1026), such as those encoding cub- and sushi-domain
proteins (CSMD1, CSMD3), and many neuronal proteins, such as the
neurexins NRXN1, NRXN4 (also known as CNTNAP2), CNTNAP4
and CNTNAP5, the neural adhesion molecule CNTN5, and the Parkinson’s
disease proteinPARK2.Whenweperformed similar analyses for several
other cancer types withmany samples, we similarly obtained large lists
including many of the same genes (data not shown).
After recognizing the problem of apparent false-positive findings,

we reviewed the published literature and found that some of these
potentially spuriousgeneshavealreadybeennominatedascancer-associated
genes in recently published cancer genome studies: for example, LRP1B
in glioblastoma2 and lung adenocarcinoma1,4;CSMD3 in ovarian cancer2;
PCLO inDLBCL9;MUC16 in lung squamous carcinoma11, breast cancer12

and DLBCL8;MUC4 in melanoma13; olfactory receptor OR2L13 in glio-
blastoma14; and TTN in breast cancer12 and other tumour types15. We
therefore set out to understand the source of the problem.
Analytical approaches in wide use today1–9,13–16 identify as signifi-

cantly mutated those genes harbouring more mutations than expected
given the average background mutation frequency for the cancer type.
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Impact of non-linear transformation on the shape of a density
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cal cumulative distribution function (ECDF),

Fn(x) =
1
n

nX

i=1
(x  xi ), (3.2)

where x1, . . . ,xn denote a sample of n draws fromX and is the indicator function,
i.e., the function that takes the value 1 if the expression in its argument is true and 0
otherwise. A plot of the ECDFs of our data is shown in Figure 3.22.
ggplot(genes, aes( x = value, color = gene)) + stat_ecdf()

The ECDF has several nice properties:

• It is lossless - the ECDF Fn(x) contains all the information contained in the original
sample x1, . . . ,xn (except the –unimportant– order of the values).

• As n grows, the ECDF Fn(x) converges to the true CDF F (x). Even for limited sam-
ple sizes n, the di�erence between the two functions tends to be small. Note that
this is not the case for the empirical density! Without smoothing, the empiri-
cal density of a finite sample is a sum of Dirac delta functions, which is di�cult
to visualize and quite di�erent from any underlying smooth, true density. With
smoothing, the di�erence can be less pronounced, but is di�cult to control, as we
discussed above.

0

500

1000

1500

5 10 15
64 E4.5 (EPI)

co
un

t

0

5000

10000

15000

0 500 1000 1500 2000
2^‘64 E4.5 (EPI)‘

co
un

t

Figure 3.23: Histograms of the same data, with
and without logarithm transform. On the top, the
data are shown on the scale on which they are
stored in the data object x, which resulted from
logarithm (base 2) transformation of the microar-
ray fluorescence intensities (Irizarry et al., 2003);
on the bottom, after re-exponentiating them back
to the fluorescence scale. For better use of space,
we capped the x -axis range at 2000.

3.6.7 The effect of transformations on densities

It is tempting to look at histograms or density plots and inspect them for evidence of
bimodality (or multimodality) as an indication of some underlying biological phe-
nomenon. Before doing so, it is important to remember that the number of modes of a
density depends on scale transformations of the data, via the chain rule. For instance,
let’s look at the data from one of the arrays in the Hiiragi dataset (Figure 3.23):
ggplot(dfx, aes(x = ‘64 E4.5 (EPI)‘)) +

geom_histogram(bins = 100)

ggplot(dfx, aes(x = 2^‘64 E4.5 (EPI)‘)) +

geom_histogram(binwidth = 20) + xlim(0, 2000)

I Question 3.6 (Advanced:) Consider a random variableX and a non-linear 1:1
transformation f : x 7! � that defines the transformed random variableY = f (X ).
Suppose the density function ofY is p(�). What is the density ofX ? How is the mode
(or: the modes) ofX related to the mode(s) ofY ?
Hint: note that a mode of a function p is a root of its derivative p 0 = dp/dx . Is it

generally true that if x0 is a mode ofX , then�0 = f (x0) is a mode ofY ?
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3.6.7 The effect of transformations on densities

It is tempting to look at histograms or density plots and inspect them for evidence of
bimodality (or multimodality) as an indication of some underlying biological phe-
nomenon. Before doing so, it is important to remember that the number of modes of a
density depends on scale transformations of the data, via the chain rule. For instance,
let’s look at the data from one of the arrays in the Hiiragi dataset (Figure 3.23):
ggplot(dfx, aes(x = ‘64 E4.5 (EPI)‘)) +

geom_histogram(bins = 100)

ggplot(dfx, aes(x = 2^‘64 E4.5 (EPI)‘)) +

geom_histogram(binwidth = 20) + xlim(0, 2000)

I Question 3.6 (Advanced:) Consider a random variableX and a non-linear 1:1
transformation f : x 7! � that defines the transformed random variableY = f (X ).
Suppose the density function ofY is p(�). What is the density ofX ? How is the mode
(or: the modes) ofX related to the mode(s) ofY ?
Hint: note that a mode of a function p is a root of its derivative p 0 = dp/dx . Is it

generally true that if x0 is a mode ofX , then�0 = f (x0) is a mode ofY ?

! The mode of a distribution is an infinitesimal concept. 
! Need either an infinite amount of data or choose smoothing / binning bandwidth  
! Number of modes (let alone their positions) can change under non-linear data 

transformations (Question 3.5 in the book)

gene expression value log2( gene expression value ) 



HIGH QUALITY GRAPHICS IN R 75

column into the wide format data.frame, and perhaps also throw in the genes’
ENSEMBL identifier for good measure. But now we immediately see the
problem: the data.frame now has some columns that represent different
samples, and others that refer to information for all samples (the gene symbol
and identifier) and we somehow have to "know" this when interpreting the
data.frame. This is what Hadley Wickham calls untidy data10. In contrast, in 10 There are many different ways for data to

be untidy.the tidy data.frame genes, we can add these columns, yet still know that each
row forms exactly one observation, and all information associated with that
observation is in the same row.

In tidy data?,

1. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.

A potential drawback is efficiency: even though there are only 4 probe –
gene symbol relationships, we are now storing them 404 times in the rows
of the data.frame genes. Moreover, there is no standardisation: we chose
to call this column symbol, but the next person might call it Symbol or even
something completely different, and when we find a data.frame that was
made by someone else and that contains a column symbol, we can hope,
but have no guarantee, that these are valid gene symbols. Addressing such
issues is behind the object-oriented design of the specialized data structures
in Bioconductor, such as the ExpressionSet class.

4.7 2D visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in
Figure ??), associations between variables (as in Figure ??), or paired data
(e. g., a disease biomarker in several patients before and after treatment). We
use the two dimensions of our plotting paper, or screen, to represent the two
variables.

Figure 4.21: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at differential expression between a wildtype and an
FGF4-KO sample.

scp <- ggplot(dfx, aes( x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column
names (sample names) in the data.frame dfx, which we created above. Since
they contain special characters (spaces, parentheses, hyphen) and start with
numerals, we need to enclose them with the downward sloping quotes to
make them syntactically digestible for R. The plot is shown in Figure ??. We

Showing data in 2D
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get a dense point cloud that we can try and interpret on the outskirts of the
cloud, but we really have no idea visually how the data are distributed within
the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency
(alpha value) of the points by modifying the alpha parameter of geom_point
(Figure ??).

Figure 4.22: As Figure ??, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes( fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,
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Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.
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Showing data in 2D
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Figure 4.26: The sunspot data. In the upper
panel, the plot shape is roughly quadratic, a
frequent default choice. In the lower panel,
a technique called banking was used to
choose the plot shape.

4.8 3–5D data

Sometimes we want to show the relations between more than two variables.
Obvious choices for including additional dimensions are the plot symbol
shapes and colours. The geom_point geometric object offers the following
aesthetics (beyond x and y):

• fill

• colour

• shape

• size

• alpha

They are explored in the manual page of the geom_point function. fill
and colour refer to the fill and outline colour of an object; alpha to its trans-
parency level. Above, in Figures ?? and following, we have used colour or

Yearly sunspot numbers 
1849-1924  

Changes in amplitude 

Banking to 45 degrees: 

Choose aspect ratio so that center 
of absolute values of slopes is 45 
degrees  

Sawtooth: Sunspot cycles 
typically rise more rapidly than 
they fall (pronounced for high 
peaks, less for medium and not for 
lowest)  

Plot shape, banking
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shapes and colours. The geom_point geometric object offers the following
aesthetics (beyond x and y):

• fill

• colour

• shape

• size

• alpha

They are explored in the manual page of the geom_point function. fill
and colour refer to the fill and outline colour of an object; alpha to its trans-
parency level. Above, in Figures ?? and following, we have used colour or

Yearly sunspot numbers 
1849-1924  

Changes in amplitude 

Banking to 45 degrees: 

Choose aspect ratio so that center 
of absolute values of slopes is 45 
degrees  

Sawtooth: Sunspot cycles 
typically rise more rapidly than 
they fall (pronounced for high 
peaks, less for medium and not for 
lowest)  

Plot shape, banking

For plots where x- 
and y-axis have 
same units: use 
1:1 aspect ratio 
(PCA!)
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transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes( x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid( . ~ lineage )
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Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid( . ⇠ lineage ). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot( dftx,

aes( x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid( Embryonic.day ~ lineage )

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.
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Figure 4.28: Faceting: the same data as in
Figure ??, split by the categorical variables
Embryonic.day (rows) and lineage
(columns).

ggplot(mutate(dftx, Tdgf1 = cut(X1450989_at, breaks = 4)),

aes( x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_wrap( ~ Tdgf1, ncol = 2 )

We see in Figure ?? that the number of points in the four panel is different,
this is because cut splits into bins of equal length, not equal number of points.
If we want the latter, then we can use quantile in conjunction with cut.
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Figure 4.29: Faceting: the same data as in
Figure ??, split by the continuous variable
X1450989_at and arranged by facet_wrap.

Axes scales In Figures ??–??, the axes scales are the same for all plots.
Alternatively, we could let them vary by setting the scales argument of the
facet_grid and facet_wrap; this parameters allows you to control whether
to leave the x-axis, the y-axis, or both to be freely variable. Such alternatives
scalings might allows us to see the full detail of each plot and thus make more
minute observations about what is going on in each. The downside is that the
plot dimensions are not comparable across the groupings.

Implicit faceting You can also facet your plots (without explicit calls to
facet_grid and facet_wrap) by specifying the aesthetics. A very sim-
ple version of implicit faceting is using a factor as your x-axis, such as in
Figures ??–??
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necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))
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Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid( . ⇠ lineage ). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot( dftx,

aes( x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid( Embryonic.day ~ lineage )

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.
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At 6 sites in Minnesota, 10 varieties 
of barley were grown in each of 
two years.  

Data: yield, for all combinations of 
site, variety, and year (6 x 10 x 2 = 
120 observations)  

Note the data for Morris - reanalysis 
in the 1990s using Trellis revealed 
that the years had been flipped!
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function to interpolate the 11 colour into a smooth-looking palette (Figure ??).

library("pheatmap")

topGenes <- order(rowVars(exprs(x)), decreasing = TRUE)[ seq_len(500) ]

rowCenter <- function(x) { x - rowMeans(x) }

pheatmap( rowCenter(exprs(x)[ topGenes, ] ),

show_rownames = FALSE, show_colnames = FALSE,

breaks = seq(-5, +5, length = 101),

annotation_col = pData(x)[, c("sampleGroup", "Embryonic.day", "ScanDate") ],

annotation_colors = list(

sampleGroup = groupColour,

genotype = c(‘FGF4-KO‘ = "chocolate1", ‘WT‘ = "azure2"),

Embryonic.day = setNames(brewer.pal(9, "Blues")[c(3, 6, 9)], c("E3.25", "E3.5", "E4.5")),

ScanDate = setNames(brewer.pal(nlevels(x$ScanDate), "YlGn"), levels(x$ScanDate))

),

cutree_rows = 4

)

sampleGroup
Embryonic.day
ScanDate

ScanDate
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Figure 4.33: A heatmap of relative expres-
sion values, i. e., log2 fold change compared
to the average expression of that gene (row)
across all samples (columns). The colour
scale uses a diverging palette, whose neutral
midpoint is at 0.

Let us take a minute to deconstruct the rather massive-looking call
to pheatmap. The options show_rownames and show_colnames control
whether the row and column names are printed at the sides of the matrix. Be-
cause our matrix is large in relation to the available plotting space, the labels
would anyway not be readable, and we suppress them. The annotation_col

Many reasonable 
defaults 

Easy to add column 
and row ‘metadata’ 
at the sides 

See also 
ComplexHeatmaps 
package
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Interactivity

Use shiny or plotly 
https://shiny.rstudio.com/gallery/genome-browser.html 

Animations (time-dependent plots): 
https://gganimate.com 

Linked Charts 
https://anders-biostat.github.io/linked-charts/ 

NB: ggvis is senescent

https://shiny.rstudio.com/gallery/genome-browser.html
https://gganimate.com
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4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 23 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).

BrBG
PiYG

PRGn
PuOr
RdBu
RdGyRdYlBu

RdYlGn
Spectral

Accent
Dark2
Paired

Pastel1
Pastel2

Set1
Set2
Set3

Blues
BuGn
BuPu
GnBu

Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr

YlOrRd

Figure 4.31: RColorBrewer palettes.

display.brewer.all()

We can get information about the available colour palettes from the
data.frame brewer.pal.info.

head(brewer.pal.info)

## maxcolors category colorblind

## BrBG 11 div TRUE

## PiYG 11 div TRUE

## PRGn 11 div TRUE

## PuOr 11 div TRUE

## RdBu 11 div TRUE

## RdGy 11 div FALSE

table(brewer.pal.info$category)

##
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4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 23 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).
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Consider these: 

Different requirements for line & area colours 

Many people are red-green colour blind  

Lighter colours tend to make areas look larger than 
darker colours → use colors of equal luminance for 
filled areas.



RColorBrewer
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RGB color space
Motivated by computer screen hardware



HSV color space
Hue-Saturation-Value (Smith 1978)

Vmin: black (one point) 

wikipedia

Vmax: a planar area of fully  
saturated colours, with  
white in the centre  

hue: similarity to  
a primary color 

saturation: width 
of the spectral  
distribution  



HSV color space
GIMP colour selector

linear or circular hue 
chooser  

and  

a two-dimensional 
area (usually a square 
or a triangle) to choose 
saturation and value/

lightness for the 
selected hue 



(almost) 1:1 mapping between RGB and HSV space

wikipedia



Perceptual colour spaces

Human perception of colour corresponds neither to 
RGB nor HSV coordinates, and neither to the 
physiological axes light-dark, yellow-blue, red-green 



Perceptually based coordinates of colour space: CIELUV, CIELAB

Commission Internationale de  
l’ Éclairage (CIE) in 1931, on the basis of 
extensive colour matching experiments with 
people, defined a “standard observer” who 
represents a typical human colour response 
(response of the three light cones + their 
processing in the brain) to a triplet (x,y,z) of 
primary light sources 

https://en.wikipedia.org/wiki/CIE_1931_color_space

1976: CIELUV (L, u, v)-coordinates are preferred by those who work with emissive 
colour technologies (e.g. computer displays); CIELAB by those working with dyes 
and pigments (such as in the printing and textile industries) 

         Ihaka 2003

https://en.wikipedia.org/wiki/CIE_1931_color_space


HCL colours
(u,v) = C * (cos H, sin H) 

H: hue (dominant wavelength) 

C: chroma (colorfulness, intensity of color 
as compared to gray) 

L: luminance (brightness, amount of gray), 
same as in CIELUV 

(C, H) are simply polar coordinates for (u,v) 





From A. Zeileis, Reisensburg 2007

Pick your favourite



Balance
The intensity of colour that should be used is dependent on 

the area that that colour is to occupy. Small areas need to 
be more colourful than larger ones.  

Choose colours centred on a mid-range or neutral value, or; 
Choose colours at equally spaced points along smooth 

paths through (perceptually uniform) colour space: equal 
luminance and chroma and correspond to set of evenly 
spaced hues.
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