

RNA-seq differential expression analysis

Charlotte Soneson

Friedrich Miescher Institute for Biomedical Research & SIB Swiss Institute of Bioinformatics

CSAMA 2022

DIFFERENTIAL ABUNDANCE ANALYSIS

Differential analysis types for RNA-seq

- Does the total output of a gene change between conditions? **DGE**
- Does the expression of individual transcripts change? DTE
- Does any isoform of a given gene change? DTE+G
- Does the isoform composition for a given gene change? DTU/DIU/DEU
- (Does anything change? GDE*)
- need different abundance quantification of transcriptomic features (genes, transcripts, exons)

Differential expression analysis

Input: expression/abundance matrix
 (features x samples) + grouping/sample annotation

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516	SRR1039517	SRR1039520	SRR1039521
ENSG00000000003	693	451	887	416	1148	1069	774	581
ENSG000000000005	0	0	0	0	0	0	0	0
ENSG00000000419	466	515	623	364	590	794	419	510
ENSG00000000457	326	274	372	223	356	450	308	297
ENSG00000000460	91	75	61	48	110	95	100	82
ENSG00000000938	0	0	2	0	1	0	0	0

• Output: result table (one line per feature)

```
        LogFC
        logCPM
        LR
        PValue
        FDR

        ENSG00000109906
        -5.882117
        4.120149
        924.1622
        5.486794e-203
        3.493826e-198

        ENSG00000165995
        -3.236681
        4.603028
        576.1025
        2.641667e-127
        8.410672e-123

        ENSG00000189221
        -3.316900
        6.718559
        562.9594
        1.909251e-124
        4.052512e-120

        ENSG00000120129
        -2.952536
        7.255438
        506.3838
        3.881506e-112
        6.179067e-108

        ENSG00000196136
        -3.225084
        6.911908
        463.2175
        9.587512e-103
        1.221008e-98

        ENSG00000101347
        -3.759902
        9.290645
        449.9697
        7.323427e-100
        7.772231e-96

        ENSG00000211445
        -3.755609
        9.102440
        433.4656
        2.861624e-96
        2.603138e-92

        ENSG00000171819
        -5.705289
        3.474697
        389.3431
        1.150502e-86
        8.140055e-83

        ENSG00000152583
        -4.364255
        5.491013
        376.1995
        8.363745e-84
        5.325782e-80
```

Differential expression analysis - input

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516	SRR1039517	SRR1039520	SRR1039521
ENSG00000000003	693	451	887	416	1148	1069	774	581
ENSG000000000005	0	0	0	0	0	0	0	0
ENSG00000000419	466	515	623	364	590	794	419	510
ENSG00000000457	326	274	372	223	356	450	308	297
ENSG00000000460	91	75	61	48	110	95	100	82
ENSG00000000938	0	0	2	0	1	0	0	0

- Most RNA-seq methods (e.g., edgeR, DESeq2, voom) need raw counts (or equivalent) as input
- **Don't** provide these methods with (e.g.) RPKMs, FPKMs, TPMs, CPMs, log-transformed counts, normalized counts, ...
- Read documentation carefully!

Why not only relative abundances?

- Ex: ratio between two Poisson distributed variables
- Low count: mean = 20 vs mean = 10
- High count: mean = 2000 vs mean = 1000

Challenges for RNA-seq data analysis

- Choice of statistical distribution
- Normalization between samples
- Few samples -> difficult to estimate parameters (e.g., variance)

MODELING COUNTS

Characteristics of RNA-seq data

- Variance depends on the mean count
- Counts are non-negative and often highly skewed

Modeling counts - the Poisson distribution

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Modeling counts

Poisson distribution

- Quantifies sampling variability
- $var(X) = \mu$
- Represents technical replicates well (mRNA proportions are identical across samples)

Example from SEQC data, same sample sequenced across multiple lanes

Modeling counts

Poisson distribution

 Does not fully capture variability across replicates (where mRNA proportions are not identical) Example from SEQC data, replicates of the same RNA mix

Modeling counts - the Negative Binomial distribution

$$P(X=k) = {k+r-1 \choose k} \cdot (1-p)^r p^k$$

Generalizes the Poisson distribution

One of several ways of capturing over-dispersion

Modeling counts

Negative binomial distribution

- $var(X) = \mu + \theta \mu^2$
- θ = dispersion
- $\sqrt{\theta}$ = "biological coefficent of variation"
- Allows mRNA proportions to vary across samples (according to a gamma distribution)
- Captures variability across biological replicates better

Example from SEQC data, replicates of the same RNA mix

With count data...

• *linear* modeling (and thus t-tests, ANOVA, etc) is no longer suitable for inference

• Generalized linear models to the rescue!

A crash course on GLMs

- A GLM consists of three parts:
 - A distribution, specifying the conditional distribution of the response Y given the predictor values
 - A linear predictor

$$\eta = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

• A link function g, linking the conditional expected value of Y to η : $g(E[Y|X]) = \eta$

The linear model is a GLM

- A GLM consists of three parts:
 - A distribution, specifying the conditional distribution of the response Y given the predictor values (Gaussian)
 - A linear predictor

$$\eta = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

• A link function g, linking the conditional expected value of Y to η : $g(E[Y|X]) = \eta$ (Identity function)

Other commonly used GLMs

- Logistic regression binary response
 - Binomial distribution
 - logit link function
- Loglinear regression count response
 - Poisson distribution
 - log link function

GLMs for RNA-seq

- Negative Binomial distribution
- Log link function
- Implemented e.g. in edgeR and DESeq2

GLMs vs transformation

- The link function in the GLM transforms the mean, not the observed values
- Thus, we can transform the systematic part without changing the assumptions on the random part
- By transforming the response (the observed values), we change also the random part (e.g., the association between mean and variance)

voom

- Instead of modeling the counts, we can *transform* them to a suitable scale and model them with a normal distribution ("microarray-like").
- voom (part of the limma package) calculates logCPM values

$$y_{gi} = \log_2\left(\frac{r_{gi} + 0.5}{R_i + 1.0} \times 10^6\right)$$

• Transformed data is heteroskedastic (variance depends on mean) - use weighted least squares

voom - mean/variance relationship

voom: Mean-variance trend

BETWEEN-SAMPLE NORMALIZATION

Normalization

Observed counts depend on:

- abundance
- gene length
- sequencing depth
- sequencing biases
- •
- "As-is", not directly comparable across samples

Normalization

- s_{ij} is a normalization factor (or offset) in the model
- counts are not explicitly scaled
 - important exception: voom/limma (followed by explicit modeling of mean-variance association)

Simple example - offsets

 Assume that we have RNA-seq reads for one gene. Is the gene differentially expressed?

Simple example - offsets

Relate counts to library sizes

Simple example - offsets

• Incorporate library size as offset

Why offset rather than scaling?

Variance/Mean for Poisson distributed variable, before as well as after multiplying the values with 2.

Why offset rather than scaling?

Poisson distributed variables with different means, scaled to have mean = 100

How to calculate normalization factors?

Attempt 1: total count (library size)

- Define a reference sample (one of the observed samples or a "pseudo-sample") gives a "target library size"
- Normalization factor for sample j is defined by

 $\frac{\text{total count in sample } j}{\text{total count in reference sample}}$

The influence of RNA composition

Observed counts are relative

 High counts for some genes are "compensated" by low counts for other genes

How to calculate normalization factors?

- Attempt 2: total count (library size) * compensation for differences in composition
- Idea: use only non-differentially expressed genes to compute the normalization factor
- Implemented by both edgeR (TMM) and DESeq2 (median count ratio)
- Both these methods assume that most genes are not differentially expressed

How to calculate normalization factors?

• Attempt 2: total count (library size) * compensation for differences in composition

"Normalization factors" (edgeR) vs "size factors" (DESeq2)

"Normalization factors" (edgeR) vs library size

"Size factors" (DESeq2) vs library size

"Effective library sizes" (edgeR) vs "size factors" (DESeq2)

Other types of normalization

- Normalization factors can be computed based on a pre-determined subset of features that we "know" shouldn't change between samples (spike-ins, house-keeping genes).
 - Need to assume that these features behave similarly to the endogenous genes.
 - May be required in targeted sequencing experiments or other settings where the assumption that "most genes don't change" is not realistic.

Making use of the transcript abundances

Impact of differential isoform usage on gene-level counts

Impact of differential isoform usage on gene-level counts

Impact of differential isoform usage on gene-level counts

Average transcript lengths

$$ATL_{g1} = 1 \cdot L + 0 \cdot 2L = L$$

$$ATL_{g2} = 0 \cdot L + 1 \cdot 2L = 2L$$

Average transcript lengths

$$ATL_{g1} = 0.75 \cdot L + 0.25 \cdot 2L = 1.25L$$

$$ATL_{g2} = 0.5 \cdot L + 0.5 \cdot 2L = 1.5L$$

Average transcript lengths

T1 length = L

$$ATL_{g1} = (0.75) \cdot L + (0.25) \cdot 2L = 1.25L$$

$$ATL_{g2} = (0.5) \cdot L + (0.5) \cdot 2L = 1.5L$$

weights obtained from transcript TPM estimates

Offsets ("scaling factors")

• Extend scaling factor for given sample and gene to include the average length of the transcripts from the gene that are present in the sample

Offsets ("average transcript lengths")

- Similar to correction factors for library size, but sample- and gene-specific
- Transcript abundance levels (TPMs) can be obtained from (e.g.) Salmon or kallisto
- Average transcript length for gene g in sample s:

$$ATL_{gs} = \sum_{i \in g} \theta_{is} \bar{\ell}_{is}, \qquad \sum_{i \in g} \theta_{is} = 1$$

 $\bar{\ell}_{is}$ = effective length of isoform i (in sample s) θ_{is} = relative abundance of isoform i in sample s

PARAMETER ESTIMATION

Example:

estimate variance of normally distributed variable

True value = 3

Modeling counts

Negative binomial distribution

- $var(X) = \mu + \theta \mu^2$
- θ = dispersion
- $\sqrt{\theta}$ = "biological coefficent of variation"
- Allows mRNA proportions to vary across samples (according to a gamma distribution)
- Captures variability across biological replicates better

Example from SEQC data, replicates of the same RNA mix

- Take advantage of the large number of genes
- Shrink the gene-wise estimates towards a center value defined by the observed distribution of dispersions across
 - all genes ("common" dispersion estimate)
 - genes with similar expression ("trended" dispersion estimate)

