

What you will learn in this lecture

- Exemplary applications
- Linear discriminant analysis
- How to get non-linear decision boundaries
- Hyperparameters
- Using cross-validation to
- tune parameters
- assess performance

Basics

- There are two basic kinds of machine learning algorithms, supervised and unsupervised
- Supervised - classification: usually there is a training set with features and class labels
- Unsupervised - clustering: there is no training set, or set with known class labels
- Typically we have observations (individuals) with features (covariates, phenotypes) measured on each observation
- All machine learning algorithms depend on finding some measure of similarity (or distance) between observations
- In many situations the features will need to be transformed, or manipulated (feature engineering) to better suit the task.
- Often feature selection - which features to use - or feature engineering are part of the process

The diabetes data

We used the forward-backward pipe operator $\%<>\%$ to convert the group column into a factor. The plot is shown in Figure 13.4.

```
library("ggplot2")
library("reshape2")
ggplot(melt(diabetes, id.vars = c("id", "group")),
    aes(x = value, col = group)) +
geom_density() + facet_wrap( ~variable, ncol = 1, scales = "free") +
theme(legend.position="bottom")
```

https://cran.r-project.org/web/packages/candisc/vignettes/ diabetes.html

Figure 13.4: We see already from the onedimensional distributions that some of the individual variables could potentially predict which group a patient is more likely to belong to. Our goal will be to combine variables to improve these one dimensional predictions.

Diabetes Data

The candisc package can give us some idea about how the data are distributed...
And potentially some ideas about how to best analyze it.
"It is clear from this that there is a problem of heterogeneity of variance-covariance matrices here. The normal group shows the smallest variances and the overt diabetic group the largest."

Molecular classification of cancer

(multiple myeloma in newly diagnosed patients, gene expression profiling)

Pathology
 Patient diagnosis / stratification
 Email - spam detection
 Credit card fraud
 Car insurance rates Sorting your photo library

Figure 13.3: In supervised learning, we assign two different roles to our variables. We have labeled the explanatory variables X and the response variable(s) Y. There are also two different sets of observations: the training set X_{ℓ} and Y_{ℓ} and the validation set X_{v} and Y_{v}.

ARTICLES

Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes

Beate Neumann ${ }^{1 *}$, Thomas Walter ${ }^{1 *}$, Jean-Karim Hériché ${ }^{5} \dagger$, Jutta Bulkescher ${ }^{1}$, Holger Erfle ${ }^{1,3} \dagger$, Christian Conrad ${ }^{\prime, 3}$, Phill Rogers ${ }^{1} \dagger$, Ina Poser ${ }^{6}$, Michael Held ${ }^{1} \dagger$, Urban Liebel ${ }^{1} \dagger$ Gregoire Pau ${ }^{9}$, Rolf Kabbe ${ }^{10}$, Annelie Wünsche ${ }^{2}$, Venkata Satagopam ${ }^{4}$, Michael Daniel W. Gerlich ${ }^{7}$, Reinhard Schneider ${ }^{4}$, Roland Eils ${ }^{10}$, Wolfgang Huber ${ }^{9}$, Jan Anthony A. Hyman ${ }^{6}$, Richard Durbin ${ }^{5}$, Rainer Pepperkok ${ }^{3}$ \& Jan Ellenberg ${ }^{2}$

Morphological Phenotyping

Provide Human Annotation to a small set of cells:
0
0 0

Which mitotic phase is this?
Can we do this automatically?

Automatic Classification Workflow

Preprocessing
e.g. normalization, background subtraction, ...

Feature extraction

e.g. lightness, nucleus area, excentricity, ...

Prophase/ Metaphase Classification

Predict mitotic state based on brightness
 Predict mitotic state based on nucleus area

Both features are informative, but none of them individually has a good predictive power

A Simple Least Squares Classifier (1D)

$$
\begin{aligned}
& \mathrm{y}[i]=-1 \text { for prophase } \\
& \mathrm{y}[\mathrm{i}]=+1 \text { for metaphase } \\
& \mathrm{x}[\mathrm{i}, \mathrm{j}=\text { intensity[i] } \\
& \text { model }=\operatorname{lm}(\mathrm{y} \sim \mathrm{x}) \\
& \text { ynew }=\text { predict }(\text { model, newdata=newx }) \\
& \text { ifelse(ynew < "pro", "meta") }
\end{aligned}
$$

A Simple Least Squares Classifier (2D)

lightness

Linear discriminant Analysis (LDA) on the diabetes data

Why is the boundary between the prediction regions for groups 2 and 3 not half-way between the centers?

QDA: Represent each group by a bivariate $\operatorname{Normal} N\left(\mu_{g}, \Sigma_{g}\right)$
LDA: $\Sigma_{g}=\Sigma$

Hiiragi mouse embryo single cell expression data

```
library("Hiiragi2013")
data("x")
probes = c("1426642_at", "1418765_at", "1418864_at", "1416564_at")
embryoCells = t(exprs(x)[probes, ]) %>% as_tibble %>%
    mutate(Embryonic.day = x$Embryonic.day) %>%
    filter(x$genotype == "WT")
```

library("mouse4302.db")
anno = AnnotationD.bi::select(mouse4302.db, keys = probes,
columns = c("SYMBOL", "GENENAME"))
anno
\#\# PROBEID SYMBOL
\#\# 1 1426642_at Fn1
\#\# 2 1418765_at Timd2
\#\# 3 1418864_at Gata4
\#\# 4 1416564_at Sox7
\# \#

GENENAME
\#\# 1
fibronectin 1
\#\# 2 T cell immunoglobulin and mucin domain containing 2
\#\# 3 GATA binding protein 4
SRY (sex determining region Y)-box 7

Figure 13.10: LDA classification regions for Embryonic.day.

Figure 13.11: QDA for the mouse cell data. Shown are all pairwise plots of the four features.

k-Nearest-Neighbor Classifier

lightness

Assign each new cell to the class of its nearest neighbor. Black line shows decision

$$
\begin{aligned}
& y[i]=+1 \text { for pro phase } \\
& y[i]=-1 \text { for meta phase } \\
& X[i,]=(\text { area[i],lightness[i]) } \\
& d=\text { class::knn(X,Xnew,y,k=1) }
\end{aligned}
$$ boundary

Which Decision Boundary?

High bias
Low variance

low model complexity (needs 2 parameters to describe the decision boundary)

Low bias
High variance

high model complexity (need 100s of parameters to describe decision boundary)

Which decision boundary has the lowest prediction error?

Two ways to think about classifiers

- One can think of classifiers as working in two different ways
- One way is to decide on (estimate) the decision boundary thereby tiling the k dimensional space you are working in.
- Then once you know what region you classify accordingly
- An alternative: decide where the cluster centroids are then assign according to whether the new observation is closer to one centroid or another.
- You can use different measures of distance to effectively stretch or shrink in different directions (often accounting for different units of measurement, or directions of more variation in the data)

Bias-Variance-Dilemma

Building an $\mathrm{Al} / \mathrm{ML}$ Model

The typical process involves identifying a machine learning algorithm that seems appropriate

- eg convolutional neural networks, xgboost, etc
- in most cases there are:
- model parameters: these are parameters that are directly estimated by the underlying model step
- hyperparameters: these are parameters the analyst must specify, eg how many layers in the neural network, how much smoothing to do, parameters that affect the "rate of learning"
- sometimes feature selection is carried out
- hyperparameters are often examined by choosing a range of possible values, then fitting with each one and selecting one on the basis of some loss function (often using cross-validation)

Train/Test/Validate

- typical use is that the training data are used to fit model parameters
- testing data are used to adjust hyperparameters (eg how many layers in the neural network)
- validation is an independent set that is only used once a final model is chosen and it is used to assess prediction accuracy
- it is very typical for one large (homogeneous) data set to be used for all three
- the data are split, possibly at random - sometimes with some care - into three different data sets and labeled accordingly
- Usually training >> testing > validation

Sensitivity and Specificity

-in order to estimate sensitivity and specificity we typically divide our learning data into three groups \bullet G1: training data - usually the largest - fit model parameters \bullet-G2: testing data - used to assess different hyperparameters -G3: validation data - used to assess the overall predictions (eg sensitivity and specificity) with respect to the target population

-one of the most important things to address is to ensure that you do not allow information to pass between different layers
-early experience with microarrays where feature selection was carried out using all the data, then data were colon cancer classification based on 62 samples (40 disease, 22 normal)
-microarray data - thousands of genes

- colon cancer classification based on 62 samples (40 disease, 22 normal)
- microarray data - thousands of genes
- the authors show how biased our estimates of the error rate are when feature selection is not included in each step of the cross-validation process

Cross-Validation

Wikipedia

Cross-Validation

- Divide the data into a training, test and validation data set
- You should have some stochastic component
- You need to worry about balance if there are important features that are rare in the population (eg red hair)
- Cross-validation helps you choose hyper-parameters
- There is some overfitting as you are using the same data to select parameters as to train, test
- Dividing one large data set into three groups tends to lead to an overly optimistic impression of the operating characteristics

Loss Functions

- In many cases not all errors are equal and you may need to balance the cost of the error against the probability of making it
- Eg: screening for serious diseases - the cost of a FP is not as big as the cost of a FN (and for other diseases it can be the other way)
- Predicting rare conditions: eg we want to use genetics to predict the probability that someone has red hair. In the population of interest about 10% of people have red hair.
- So a naive classifier - "No one has red hair" is right 90\% of the time....
- We might want to use a loss function that balances the errors differently in order to ensure that we are predicting the outcome of interest....

Example: 2 classes, 2 variables, 200 objects

Cross-validation for k nearest neighbours

Cross-validation for k nearest neighbours

Shading: classification result for $k=5$

Come back to the linear least squares classifier

X : $n \times d$ matrix with d-dimensional features for n samples y : vector of length n : $\quad y_{i}=0$ for first class, 1 for second class
Fit linear model by minimizing the squared error:

$$
\hat{\beta}=\underset{\beta}{\arg \min }\|X \beta-y\|_{2}^{2}
$$

$$
\begin{aligned}
& \text { model }=\text { lm.fit }(X, y) \\
& \text { ynew }=\text { predict(model, Xnew) \$fitted.values } \\
& \text { ifelse(ynew < } 0,-1,1 \text {) } \\
& \text { Extension to } k \text { classes: } \\
& Y \text { : an } n \times d \text { matrix of } \\
& \text { indicator variables }
\end{aligned}
$$

In practice: Ida (Rpackage MASS)

Some Other Considerations

- In some cases we are very certain about the classification of a new observations, but in other cases we might want to express some amount of "doubt".
- The point might lie very close to the boundary
- Sometimes you might want to just refuse to attempt to classify perhaps because the new data is very different from the data used to train the classifier.
- This requires access to the original training data - and there are some reasons why that information should be retained and used.

Non-Linear Classifiers?

These classes can not be separated by a straight line

We could either

- bend our decision boundaries to be curvy, or

bend our data space and stick with linear boundaries.

Guess what is

Data Transformation \& Augmentation

 Apply non-linear functions, e.g.$$
f(x)=\left(1, x, x^{2}, x^{3}, \ldots\right)
$$

Train linear classifier in the new feature space

non-linear
classifier in the original feature space

Quadratic Extension

Parabolic decision boundaries can be achieved by using the product

The Kernel Trick

You don't even need to do

 the augmentation explicitly.Rememb r that relative positions of all data points can be e coded by their distance matrix.

Now just replace Euclidean distance with some other called "kernel".

The Kernel Trick

Popular choices

Linear kernel

$$
K\left(x_{i}, x_{j}\right)=x_{i} x_{j}
$$

Radial basis functions

Polynomial
$K\left(x_{i}, x_{j}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{i}-x_{j}\right\|\right)$
$K\left(x_{i}, x_{j}\right)=\left(x_{i} x_{j}+1\right)^{d}$

Example

Radial Basis Functions
Kernel

Thick line: class separating hyperplane
Thin line: margin
/

Circles: support vectors)

The Influence of the Kernel Parameter

$$
\gamma=\sigma^{-2}, \text { RBF }
$$

The curse of dimensionality

- Question 13.12 Assume you have a dataset with 1000000 data points in p dimensions. The data are uniformly distributed in the unit hybercube (i.e., all features lie in the interval $[0,1]$). What's the side length of a hybercube that can be expected to contain just 10 of the points, as a function of p ?
- Solution 13.12

See Figure 13.16.

```
sideLength = function(p, pointDensity = le6, pointsNeeded = 10)
    (pointsNeeded / pointDensity) ^ (1 / p)
ggplot(tibble(p = 1:400, sideLength = sideLength(p)),
    aes(x = p, y = sideLength)) + geom_line(col = "red") +
    geom_hline(aes(yintercept = 1), linetype = 2)
```


- Question 13.13 What fraction of a unit cube's total volume is closer than 0.01 to any of its surfaces, as a function of the dimension?
- Solution 13.13

See code below and Figure 13.17.

```
tibble(
    p = 1:400,
    volOuterCube = 1 ^ p,
    volInnerCube = 0.98 ^ p, # 0.98 = 1 - 2 * 0.01
    'V(shell)' = volOuterCube - volInnerCube) %>%
ggplot(aes(x = p, y ='V(shell)')) + geom_line(col = "blue")
```


An attempt to visualize a 7dim hypercube ($2^{7}=128$ corners)
http://yaroslavvb.blogspot.com/2006/05/curse-of-dimensionality-and-intuition.html

- Question 13.14 What is the coefficient of variation (ratio of standard deviation over average) of the distance between two randomly picked points in the unit hypercube, as a function of the dimension?

Curse of Dimensionality: overfitting guaranteed

- Consider:
- 10 samples per class
- Each sample is characterised by several hundred features.
" Even a linear classifier will (always) be too complex: overfitting

Regularisation

Remember that a plane in
 3D space can be represented by its normal vector.

Same for n-dim. space
Idea: rather than allowing general vectors, ask for many of the coefficients to be small, or even zero.
E.g.: decision rule:
x $\mathbf{n}-1>0$

Commonly used penalizationsand their geometry

Lasso estimator: $p(\beta)=\|\beta\|_{1} \quad$ Ridge estimator: $p(\beta)=\|\beta\|_{2}^{2}$
$\hat{\beta} \in \arg \min _{\beta} \ell(\beta)+\lambda\|\beta\|_{1}$
$=\arg \min _{\beta} \ell(\beta)$ s.t. $\|\beta\|_{1} \leq t$,

$$
\begin{aligned}
& \hat{\beta} \in \arg \min _{\beta} \ell(\beta)+\lambda\|\beta\|_{2}^{2} \\
& =\arg \min _{\beta} \ell(\beta) \text { s.t. }\|\beta\|_{2}^{2} \leq t,
\end{aligned}
$$

- Ridge just wants the $\boldsymbol{\beta}$ to be small
- Lasso snaps many of the elements to 0 ('sparsity')

13.6.2 Example: predicting colon cancer from stool microbiome composition

Zeller et al. (2014) studied metagenome sequencing data from fecal samples of 156 humans that included colorectal cancer patients and tumor-free controls. Their aim was to see whether they could identify biomarkers (presence or abundance of certain taxa) that could help with early tumor detection. The data are available from Bioconductor through its ExperimentHub service under the identifier EH359.

```
library("ExperimentHub")
eh = ExperimentHub()
zeller = eh[["EH361"]]
table(zeller$disease)
##
## cancer large_adenoma
## 53 15
    n small_adenoma
    61 27
```

\# \#		subjectID	age gender	bomi	country	disease
\# \#	CCIS71578391ST-4-0	FR-187	70 male	25	france	n
\# \#	CCIS50003399ST-4-0	FR-194	66 female	28	france	n
\# \#	CCIS $38765456 S T-20-0$	FR-723	79 female	22	france	cancer
\# \#		tnm_stage	ajcc_stage	loc	lization	fobt
\# \#	CCIS71578391ST-4-0	<NA>	<NA>		<NA>	negative
\# \#	CCIS50003399ST-4-0	<NA>	<NA>		<NA>	negative
\# \#	CCIS38765456ST-20-0	t 4 n 1 ml	iv			positive
\# \#		wif-1_gene	_methylation	n_te	st group	up
\# \#	CCIS 71578391 ST-4-0			gati	ve contr	ol
	CCIS50003399ST-4-0			gati	ve contr	ol

```
rownames(zellerNC) [1:4]
## [1] "k__Bacteria"
## [2] "k___Viruses"
## [3] "k___Bacterialp__Firmicutes"
## [4] "k___Bacterialp__Bacteroidetes"
rownames(zellerNC)[nrow(zellerNC) + (-2:0)] %>% formatfn
## [[1]]
## [1] "k__Bacterial p__Proteobacterial c___Deltaproteobacteria|"
## [2] "o___Desulfovibrionales| f___Desulfovibrionaceae|"
## [3] "g___Desulfovibrio| s__Desulfovibrio_termitidis"
##
## [[2]]
## [1] "k__Viruses| p__Viruses_noname| c__Viruses_noname|"
## [2] "o__Viruses_noname| f___Baculoviridae|"
## [3] "g___Alphabaculovirus|"
## [4] "s___Bombyx_mori__nucleopolyhedrovirus|"
## [5] "t___Bombyx_mori_nucleopolyhedrovirus_unclassified"
##
## [ [3]]
## [1] "k__Bacteria| p__Proteobacteria| c___Deltaproteobacteria|"
## [2] "o___Desulfovibrionales| f___Desulfovibrionaceae|"
## [3] "g___Desulfovibrio| s___Desulfovibrio_termitidis|"
## [4] "t___GCF_000504305"
```


glmnet on the Zeller data

Summary: It's all about adapting the complexity of the model to that of the data

High bias
Low variance

low model complexity (needs 2 parameters to describe the decision boundary)

Low bias
High variance

high model complexity
(need 100s of parameters to describe decision boundary)

Reduce complexity: regularization (Lasso, ridge, ...) Increase complexity: data transformation, augmentation, kernels Always assess classifiers by cross-validation

Another example of overfitting

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Trevor Hastie

Robert Tibshirani
Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

Free PDF
Q Springer

