
Graphics and Visualisation

W.Huber; some slides adapted from Laura Symul & Susan Holmes

Why graphics?
• To explore data

• To communicate data patterns &
preliminary insights with collaborators

• To display results and convey findings in
a publication

Source:
Assessment report
EMA/707383/2020
21 December 2020
Committee for Medicinal Products for Human
Use (CHMP)

Comirnaty
Common name: COVID-19 mRNA vaccine
(nucleoside-modified)
Procedure No.: EMEA/H/C/005735/0000
Page 82 / 140

A picture says
more than a
thousand words

Horror Picture Show

A
B
C

A
B
C

A
B
C

A
B
C

0,0

10,0

20,0

30,0

40,0

1 2 3 8 12 14 15 16 17

A
B
C

A
B
C

0,0

10,0

20,0

30,0

40,0

1 2 3 8 12 14 15 16 17

A
B
C

0,0

10,0

20,0

30,0

40,0

0 5 9 14 18

Source: Karl Broman https://www.biostat.wisc.edu/~kbroman/topten_worstgraphs/

https://www.biostat.wisc.edu/~kbroman/topten_worstgraphs/

Journal of Clinical Epidemiology 57 (2004) 1086–1095

Hematocrit was not validated as a surrogate end point for survival
among epoetin-treated hemodialysis patients

Dennis J. Cottera,*, Kevin Stefanika, Yi Zhanga, Mae Thamera, Daniel Scharfsteinb,
James Kaufmanc

aMedical Technology and Practice Patterns Institute, Inc., 4733 Bethesda Avenue, Suite 510, Bethesda, MD 20814
bDepartment of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205-2179

cVA Boston Healthcare System, Jamaica Plain, MA 02130

Accepted 30 April 2004

Abstract

Objective: To evaluate the use of hematocrit as a surrogate end point for survival among end-stage renal disease (ESRD) patients
treated with epoetin.

Study design and setting: Using United States Renal Data System (USRDS) data, we conducted an observational prospective study
to analyze the relationships among epoetin dose, hematocrit, and survival for 31,301 facility-based hemodialysis patients incident to ESRD
therapy in 1998. To address our objective, we used criteria developed by Prentice based on results from a Cox regression model.

Results: Results indicate that hematocrit is inversely associated with epoetin dose. For the same epoetin treatment-related achieved
hematocrit levels, there were widely varying treatment-related survival outcomes, thereby challenging a central criterion required to
empirically validate a surrogate end point.

Conclusion: Our results support earlier clinical trial and epidemiological data suggesting that hematocrit may not be a valid surrogate
for survival among the epoetin-treated renal failure population. We hypothesize that hematocrit may not be in the causal pathway or that
epoetin may have important mechanisms of action apart from increasing hematocrit. Effective treatment for anemia may therefore not be
simply a matter of increasing hematocrit. This study has potential implications for revising the existing treatment guidelines for anemia
management and selecting an appropriate treatment regimen. ! 2004 Elsevier Inc. All rights reserved.

Keywords: End point, surrogate; Outcome assessment; Causal effect; Anemia, management of; Epoetin; Survival; Hematocrit, target

1. Introduction

Anemia is a chronic comorbidity affecting nearly all end-
stage renal disease (ESRD) patients [1] and resulting in
reduced quality of life [2] and decreased survival rates [3].
In 1987, investigators reported successful use of recombinant
human erythropoietin (epoetin, or EPO) in treating the
anemia of ESRD patients. By 2000, more than 90% of in-
center hemodialysis patients received epoetin treatment for
their anemia (Fig. 40 in [4]). In their review of progress
made in the management of anemia, the National Institute
of Diabetes and Digestive and Kidney Diseases (NIDDK)

* Corresponding author. Tel.: (301) 652-4005; fax: (301) 652-8335.
E-mail address: dcott@mtppi.org (D.J. Cotter).
The data reported here have been supplied by the United States Renal

Data System (USRDS). The interpretation and reporting of these data are
the responsibility of the authors and in no way should be seen as the official
policy or interpretation of the U.S. Government.

0895-4356/04/$ – see front matter ! 2004 Elsevier Inc. All rights reserved.
doi: 10.1016/j.jclinepi.2004.05.002

cited a relationship between improved hematocrit levels and
mortality, stating that “subsequent studies have shown that
increasing patients’ hematocrits with EPO decreases mortal-
ity and improves quality of life” [5]. Given this perceived
relationship, the use of hematocrit as a surrogate for guiding
epoetin treatment among chronic renal failure patients re-
ceiving epoetin is widely accepted among nephrologists
[3,6–8]. Furthermore, given the difficulty of studying the
true clinical outcome (i.e., survival), it is not surprising
that the pivotal Phase III epoetin trials to obtain U.S. Food
and Drug Administration (FDA) approval implicitly used he-
matocrit as a surrogate end point [9].

Although there is a paucity of clinical trials examining
the causal effect of epoetin on mortality, the existing data
support our contention that hematocrit may not be a valid
surrogate for survival among epoetin-treated renal failure
patients. In one narrowly focused clinical trial among ESRD
patients with cardiovascular complications, the normalized

D.J. Cotter et al. / Journal of Clinical Epidemiology 57 (2004) 1086–1095 1093

[1] https://doi.org/10.1016/S0092-8674(04)00127-8
[2] https://doi.org/10.1016/j.jclinepi.2004.05.002

https://doi.org/10.1016/S0092-8674(04)00127-8
https://doi.org/10.1016/j.jclinepi.2004.05.002

Goals for this lecture
1. Discuss the principles of good vs bad data viz

2. Review base R plotting

3. Understand the grammar of graphics concept

4. Introduce, explain and use the ggplot() function

5. Discuss how to plot 1D, 2D, 3-5D data and select the

most appropriate plot type. Use faceting

6. Use visualization for the inspection of large datasets

and discovery of global trends (e.g. batch effects)

7. Implement interactive (3D) visualization

9

Respect Graphical Integrity principles

Visual Display of Quantitative Information
E. Tufte

Representation of numbers should match the true proportions

= #

9

Respect Graphical Integrity principles

The problem with the “3D
perspective”:

The area (or indeed the actual
angles) occupied by each category
on the plot is not proportional to the
actual numbers

This principle also applies to inclusion
of the baseline (e.g., 0) in bar charts,
scatterplots…

Visual Display of Quantitative Information
E. Tufte

Representation of numbers should match the true proportions

= #

Respect humans' visual abilities

Pie charts are bad because the human brain is not good at differentiating
angles. (Especially angles that do not have a horizontal or vertical edge)

https://medium.com/@kennelliott/39-studies-about-human-perception-in-30-minutes-4728f9e31a73

(but the colours…)

https://medium.com/@kennelliott/39-studies-about-human-perception-in-30-minutes-4728f9e31a73

Goals for this lecture
1. Discuss the principles of good vs bad data viz

2. Review base R plotting

3. Understand the grammar of graphics concept

4. Introduce, explain and use the ggplot() function

5. Discuss how to plot 1D, 2D, 3-5D data and select the

most appropriate plot type. Use faceting

6. Use visualization for the inspection of large datasets

and discovery of global trends (e.g. batch effects)

7. Implement interactive (3D) visualization

base R plotting

canvas model:
a series of instructions that
sequentially fill the plotting
canvas

62 MODERN STATISTICS FOR MODERN BIOLOGY

• Create beautiful and intuitive plots for scientific presentations and publica-
tions

4.2 Built-in R Plotting

R has built-in plotting functions that can be used to quickly and easily visualize
data. ●●

●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●
●

●
●

●●

●●
●●
●●

●●

●
●

●●

●●

●●

●
●
●●
●●

●●

●●

●●

●
●

●●

●●

●●
●●

●●

●●

●●

●●

●●

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase$conc

D
N
as
e$
de
ns
ity

Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

Run conc density

1 1 0.0488 0.017

2 1 0.0488 0.018

3 1 0.1953 0.121

4 1 0.1953 0.124

5 1 0.3906 0.206

6 1 0.3906 0.215

plot(DNase$conc, DNase$density) 0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase concentration (ng/ml)

O
pt

ica
l d

en
sit

y

Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other

base R plotting

canvas model:
a series of instructions that
sequentially fill the plotting
canvas

62 MODERN STATISTICS FOR MODERN BIOLOGY

• Create beautiful and intuitive plots for scientific presentations and publica-
tions

4.2 Built-in R Plotting

R has built-in plotting functions that can be used to quickly and easily visualize
data. ●●

●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●
●

●
●

●●

●●
●●
●●

●●

●
●

●●

●●

●●

●
●
●●
●●

●●

●●

●●

●
●

●●

●●

●●
●●

●●

●●

●●

●●

●●

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase$conc

D
N
as
e$
de
ns
ity

Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

Run conc density

1 1 0.0488 0.017

2 1 0.0488 0.018

3 1 0.1953 0.121

4 1 0.1953 0.124

5 1 0.3906 0.206

6 1 0.3906 0.215

plot(DNase$conc, DNase$density) 0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase concentration (ng/ml)

O
pt

ica
l d

en
sit

y

Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other

Great for quick data
exploration!

base R plotting

Inefficient for customization
and generating complex plots.

62 MODERN STATISTICS FOR MODERN BIOLOGY

• Create beautiful and intuitive plots for scientific presentations and publica-
tions

4.2 Built-in R Plotting

R has built-in plotting functions that can be used to quickly and easily visualize
data. ●●

●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●
●

●
●

●●

●●
●●
●●

●●

●
●

●●

●●

●●

●
●
●●
●●

●●

●●

●●

●
●

●●

●●

●●
●●

●●

●●

●●

●●

●●

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase$conc

D
N
as
e$
de
ns
ity

Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

Run conc density

1 1 0.0488 0.017

2 1 0.0488 0.018

3 1 0.1953 0.121

4 1 0.1953 0.124

5 1 0.3906 0.206

6 1 0.3906 0.215

plot(DNase$conc, DNase$density) 0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase concentration (ng/ml)

O
pt

ica
l d

en
sit

y

Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other

canvas model:
a series of instructions that
sequentially fill the plotting
canvas

base R plotting

ZUSE Plotter Z64 (presented in 1961).

base R plotting

Drawbacks:
• Layout choices have to be made at the beginning with

no overview over what may still be coming
• Different functions for different plot types, with different

interfaces
• Routine tasks can require lots of boilerplate code
• No concept of facets / lattices
• Only a single global coordinate system allowed per plot
• Poor default colours
• Resizing often leads to unsatisfactory results

Goals for this lecture
1. Discuss the principles of good vs bad data viz

2. Review base R plotting

3. Understand the grammar of graphics concept

4. Introduce, explain and use the ggplot() function

5. Discuss how to plot 1D, 2D, 3-5D data and select the

most appropriate plot type. Use faceting

6. Use visualization for the inspection of large datasets

and discovery of global trends (e.g. batch effects)

7. Implement interactive (3D) visualization

Concept coined by
Leland Wilkinson in
1999.
An abstraction which
facilitates reasoning and
communicating graphics.

The Grammar of Graphics

1999

Concept coined by
Leland Wilkinson in
1999.
An abstraction which
facilitates reasoning and
communicating graphics.

The Grammar of Graphics

1999 2010

ggplot2 is an implementation of a
layered grammar of graphics that
enables users to independently
specify the building blocks of a plot
and combine them to create just
about any kind of graphical display.

ggplot2 grammar of graphics
The components of ggplot2's grammar of graphics are
• datasets (nouns)
• geometric objects (verbs), visual representations of the data, e.g.

points, lines, rectangles, contours,
• aesthetics (adverbs), instructions on how to map variables to

geometric objects,
• statistical transformation/summaries e.g. line fitting, binning,
• coordinate systems and associated scales e.g. linear, log, rank,
• facets separating subsets of data into multiple subplots,
• optional parameter settings e.g. text size, font,

alignment, legend positions

ggplot2 grammar of graphics
���� ������� �������� �� � 9

along the x-axis and the sizes along the�-axis. Finally, we provided the argument
stat = "identity" (in other words, do nothing) to the geom_bar function, since
otherwise it would try to compute a histogram of the data (the default value of stat
is "count"). stat is short for statistic, which is what we call any function of data.
The identity statistic just returns the data themselves, but there are other more
interesting statistics, such as binning, smoothing, averaging, taking a histogram, or
other operations that summarize the data in some way.
Question 3.4.1
Flip the x - and�-aesthetics to produce a horizontal barplot.
These concepts –data, geometrical objects, statistics– are some of the ingredients

of the grammar of graphics, just as nouns, verbs and adverbs are ingredients of an
English sentence.
The plot in Figure 3.7 is not bad, but there are several potential improvements.

We can use colour for the bars to help us quickly see which bar corresponds to which
group. This is particularly useful if we use the same colour scheme in several plots. To
this end, let’s define a named vector groupColour that contains our desired colours
for each possible value of sampleGroup10. 10 The information is completely equivalent to

that in the sampleGroup and colour columns
of the data.frame groups, we’re just adapting to
the fact that ggplot2 expects this information in
the form of a named vector.

groupColour = setNames(groups$colour, groups$sampleGroup)

Another thing that we need to fix is the readability of the bar labels. Right now
they are running into each other — a common problem when you have descriptive
names.

ggplot(groups, aes(x = sampleGroup, y = n, fill = sampleGroup)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = groupColour, name = "Groups") +
theme(axis.text.x = element_text(angle = 9�, hjust = 1))

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

sampleGroup

n

Groups
E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)

E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE)

Figure 3.8: Similar to Figure 3.7, but with coloured
bars and better bar labels.

Let’s dissect the above "sentence". We added an argument, fill to the aes func-
tion that states that we want the bars to be coloured (filled) based on sampleGroup
(which in this case co-incidentally is also the value of the x argument, but that need
not be so). Furthermore we added a call to the scale_fill_manual function, which
takes as its input a colour map – i. e., the mapping from the possible values of a vari-
able to the associated colours – as a named vector. We also gave this colour map a
title (note that in more complex plots, there can be several di�erent colour maps
involved). Had we omitted the call to scale_fill_manual, ggplot2 would have used
its choice of default colours. We also added a call to theme stating that we want the
x-axis labels rotated by 90 degrees, and right-aligned (hjust; the default would be to
center it).

3.5 The Grammar of Graphics

The components of ggplot2’s grammar of graphics are
1. a dataset
2. one or more geometric objects that serve as the visual representations of the data –
for instance, points, lines, rectangles, contours

3. a description of how the variables in the data are mapped to visual properties (aes-
thetics) of the geometric objects, and an associated scale (e. g., linear, logarithmic,

���� ������� �������� �� � 9

along the x-axis and the sizes along the�-axis. Finally, we provided the argument
stat = "identity" (in other words, do nothing) to the geom_bar function, since
otherwise it would try to compute a histogram of the data (the default value of stat
is "count"). stat is short for statistic, which is what we call any function of data.
The identity statistic just returns the data themselves, but there are other more
interesting statistics, such as binning, smoothing, averaging, taking a histogram, or
other operations that summarize the data in some way.
Question 3.4.1
Flip the x - and�-aesthetics to produce a horizontal barplot.
These concepts –data, geometrical objects, statistics– are some of the ingredients

of the grammar of graphics, just as nouns, verbs and adverbs are ingredients of an
English sentence.
The plot in Figure 3.7 is not bad, but there are several potential improvements.

We can use colour for the bars to help us quickly see which bar corresponds to which
group. This is particularly useful if we use the same colour scheme in several plots. To
this end, let’s define a named vector groupColour that contains our desired colours
for each possible value of sampleGroup10. 10 The information is completely equivalent to

that in the sampleGroup and colour columns
of the data.frame groups, we’re just adapting to
the fact that ggplot2 expects this information in
the form of a named vector.

groupColour = setNames(groups$colour, groups$sampleGroup)

Another thing that we need to fix is the readability of the bar labels. Right now
they are running into each other — a common problem when you have descriptive
names.

ggplot(groups, aes(x = sampleGroup, y = n, fill = sampleGroup)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = groupColour, name = "Groups") +
theme(axis.text.x = element_text(angle = 9�, hjust = 1))

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

sampleGroup

n

Groups
E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)

E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE)

Figure 3.8: Similar to Figure 3.7, but with coloured
bars and better bar labels.

Let’s dissect the above "sentence". We added an argument, fill to the aes func-
tion that states that we want the bars to be coloured (filled) based on sampleGroup
(which in this case co-incidentally is also the value of the x argument, but that need
not be so). Furthermore we added a call to the scale_fill_manual function, which
takes as its input a colour map – i. e., the mapping from the possible values of a vari-
able to the associated colours – as a named vector. We also gave this colour map a
title (note that in more complex plots, there can be several di�erent colour maps
involved). Had we omitted the call to scale_fill_manual, ggplot2 would have used
its choice of default colours. We also added a call to theme stating that we want the
x-axis labels rotated by 90 degrees, and right-aligned (hjust; the default would be to
center it).

3.5 The Grammar of Graphics

The components of ggplot2’s grammar of graphics are
1. a dataset
2. one or more geometric objects that serve as the visual representations of the data –
for instance, points, lines, rectangles, contours

3. a description of how the variables in the data are mapped to visual properties (aes-
thetics) of the geometric objects, and an associated scale (e. g., linear, logarithmic,

The components of ggplot2's grammar of graphics are
• datasets (nouns)
• geometric objects (verbs), visual representations of the data, e.g.

points, lines, rectangles, contours,
• aesthetics (adverbs), instructions on how to map variables to

geometric objects,
• statistical transformation/summaries e.g. line fitting, binning,
• coordinate systems and associated scales e.g. linear, log, rank,
• facets separating subsets of data into multiple subplots,
• optional parameter settings e.g. text size, font,

alignment, legend positions

geometric objects

Cheat sheet: https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

ggplot() template

Data must be in dataframe format

[1] Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages
by Ohnishi et al., Nature Cell Biology (2014) 16(1): 27-37. doi: 10.1038/ncb2881.

Gene expression
microarray
dataset on early
development of
mouse embryos

transcriptomes of
~100 individual
cells at different
time points in. [1]

ggplot()
requires input
data in form of a
dataframe

Multiple layers can be superposed

68 MODERN STATISTICS FOR MODERN BIOLOGY

is the data format that ggplot2 functions most easily take as input (more on
this in Sections ?? and ??).

We can further enhance the plot by using colours – since each of the
points in Figure ?? corresponds to one sample, it makes sense to use the
sampleColour information in the object x.

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point(aes(colour = sampleColour), shape = 19) +

geom_smooth(method = "loess") +

scale_colour_discrete(guide = FALSE)

Question 4.5.1 In the code above we defined the colour aesthetics (aes)
only for the geom_point layer, while we defined the x and y aesthetics for
all layers. What happens if we set the colour aesthetics for all layers, i. e.,
move it into the argument list of ggplot? What happens if we omit the call to
scale_colour_discrete?

Question 4.5.2 Is it always meaningful to summarize scatterplot data with a
regression line as in Figures ?? and ???

As a small side remark, if we want to find out which genes are targeted by
these probe identifiers, and what they might do, we can call4. 4 Note that here were need to use the orig-

inal feature identifiers (e. g., “1426642_at”,
without the leading “X”). These is the nota-
tion used by the microarray manufacturer,
by the Bioconductor annotation packages,
and also inside the object x. The leading
“X” that we used above when working with
dftx was inserted during the creation
of dftx by the data.frame, since its ar-
gument check.names is set to TRUE by
default. Alternatively, we could have kept
the original identifer notation by setting
check.names=FALSE, but then we would
need to work with the backticks, such as
aes(x = ‘1426642_at‘, ...), to make
sure R understands them correctly.

library("mouse4302.db")

AnnotationDbi::select(mouse4302.db,

keys = c("1426642_at", "1418765_at"), keytype = "PROBEID",

columns = c("SYMBOL", "GENENAME"))

PROBEID SYMBOL

1 1426642_at Fn1

2 1418765_at Timd2

GENENAME

1 fibronectin 1

2 T cell immunoglobulin and mucin domain containing 2

Often when using ggplot you will only need to specify the data, aesthet-
ics, a geometric object, and labels (through the scale parameters). Most
geometric objects implicitly call a suitable default statistical summary of the
data, and vice versa. For example, if you are using geom_histogram, ggplot2
implicitly bins your data and displays the results in barplot (geom_bar) format.
Thus, you could equivalently plot your histogram by calling geom_bar with
stat_bin.

0

500

1000

1500

2000

4 8 12
20 E3.25

co
un

t

0

500

1000

1500

2000

4 8 12
20 E3.25

co
un

t

Figure 4.11: Two different ways of creating
the same histogram using the grammar of
graphics.

dfx <- as.data.frame(exprs(x))

p1 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +

geom_histogram(binwidth = 0.2)

p2 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +

HIGH QUALITY GRAPHICS IN R 67

0

10

20

30

E3
.25

E3
.25

 (F
GF

4−
KO

)

E3
.5

(E
PI

)

E3
.5

(F
GF

4−
KO

)

E3
.5

(P
E)

E4
.5

(E
PI

)

E4
.5

(F
GF

4−
KO

)

E4
.5

(P
E)

Groups

Nu
mb

er
 of

 S
am

ple
s

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.8: Fixing the barplot names through
rotation of the labels.

We have added on another clause, produced by the theme function, which
indicates that we like x-axis text set at an angle of 90 degrees and right
justified (hjust; the default would be to center it).

Now we have a great looking plot that clearly conveys our data on the
number of samples in each group and also the types of groups that we are
comparing.

4.5 The Grammar of Graphics

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●
●●

● ●

●●
●

●

●

5

10

5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.9: A scatterplot with three layers
that show different statistics of the same
data: points, a smooth regression line, and a
confidence band.

The components of ggplot2’s grammar of graphics are

1. a dataset
2. a choice of geometric object that serves as the visual representations of

the data – for instance, points, lines, rectangles, contours
3. a description of how the variables in the data are mapped to visual proper-

ties (aesthetics) of the geometric objects, and an associated scale, (e. g.,
linear, logarithmic, rank)

4. a statistical summarisation rule
5. a coordinate system
6. a facet specification, i. e. the use of several plots to look at the same data

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●
●●

● ●

●●
●

●

●

5

10

5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.10: As Figure ??, but in addition
with points coloured by the sample group
(as in Figure ??). We can now see that the
expression values of the gene Timd2 (whose
mRNA is targeted by the probe 1418765_at)
are consistently high in the early time points,
whereas its expression goes down in the
EPI samples at days 3.5 and 4.5. In the
FGF4-KO, this decrease is delayed - at E3.5,
its expression is still high. Conversely, the
gene Fn1 (1426642_at) is off in the early
timepoints and then goes up at days 3.5 and
4.5. The PE samples (green) show a high
degree of cell-to-cell variability.

In the examples above, Figures ??–??, the dataset was groupsize, the
variables were the numeric values as well as the names of groupsize,
which we mapped to the aesthetics y-axis and x-axis respectively, the scale
was linear on the y and rank-based on the x-axis (the bars are ordered
alphanumerically and each has the same width), the geometric object was the
rectangular bar, and the statistical summary was the trivial one (i. e., none).
We did not make use of a facet specification in the plots above, but we’ll see
examples later on (Section ??).

In fact, ggplot2’s implementation of the grammar of graphics allows you to
use the same type of component multiple times, in what are called layers?.
For example, the code below uses three types of geometric objects in the
same plot, for the same data: points, a line, and a confidence band.

dftx <- data.frame(t(exprs(x)), pData(x))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point(shape = 1) +

geom_smooth(method = "loess")

We assembled a copy of the expression data (exprs(x)) and the sample
annotation data (pData(x)) all together into the data.frame dftx – since this

Here, the first layers holds the points,
the second holds the smoothed average.

Using the same plot, we can easily change the coordinates

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

Using the same plot, we can easily change the coordinates

No geom defined yet!

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

Using the same plot, we can easily change the coordinates

No geom defined yet!

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

Using the same plot, we can easily change the coordinates

No geom defined yet!

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

Using the same plot, we can easily change the coordinates

No geom defined yet!

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

Using the same plot, we can easily change the coordinates

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

No geom defined yet!

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

24

Themes can change the look

24

Themes can change the look

24

Themes can change the look

24

Themes can change the look

24

Themes can change the look

Goals for this lecture
1. Discuss the principles of good vs bad data viz

2. Review base R plotting

3. Understand the grammar of graphics concept

4. Introduce, explain and use the ggplot() function

5. Discuss how to plot 1D, 2D, 3-5D data and select the

most appropriate plot type. Use faceting

6. Use visualization for the inspection of large datasets

and discovery of global trends (e.g. batch effects)

7. Implement interactive (3D) visualization

1D plot types
What do you use to show or compare 1D distributions?

1D plot types

Boxplot makes sense for unimodal distributions
Histogram requires definition of bins/binwidths/break positions. It

can create visual artifacts esp. if the number of data points is
not large

Density requires setting of bandwidth parameter; obscures the
sample size (i.e. the uncertainty of the estimate)

ECDF (Empirical Cumulative Density Function) does not have
these problems, but is more abstract and its interpretation
requires more training.

If you have only up to a few dozens of points  
just show the raw data! (e.g. with beeswarm)

What do you use to show or compare 1D distributions?

Boxplot

Boxplots are good for plotting summary of 1D continuous data;
they allow you to compare quantiles of data distributions.

Violin Plot

If there are many observations in the
dataset, we can show the estimated
distribution with violin plots.

Dot & Beeswarm Plot

Bar charts with error bars

Weissgerber TL, et al. (2015) Beyond Bar and Line Graphs: Time for a New Data
Presentation Paradigm. PLOS Biology 13(4): e1002128.

https://doi.org/10.1371/journal.pbio.1002128
https://doi.org/10.1371/journal.pbio.1002128

Bar charts with error bars

Weissgerber TL, et al. (2015) Beyond Bar and Line Graphs: Time for a New Data
Presentation Paradigm. PLOS Biology 13(4): e1002128.

What is wrong with {bar charts + error bars} ?

https://doi.org/10.1371/journal.pbio.1002128
https://doi.org/10.1371/journal.pbio.1002128

Bar charts with error bars

Weissgerber TL, et al. (2015) Beyond Bar and Line Graphs: Time for a New Data
Presentation Paradigm. PLOS Biology 13(4): e1002128.

Bar charts
(with error
bars)
not good for
showing
distributions

Use bar charts
only to show
class counts.

What is wrong with {bar charts + error bars} ?

https://doi.org/10.1371/journal.pbio.1002128
https://doi.org/10.1371/journal.pbio.1002128

Bar charts with error bars

Weissgerber TL, et al. (2015) Beyond Bar and Line Graphs: Time for a New Data
Presentation Paradigm. PLOS Biology 13(4): e1002128.

Bar charts
(with error
bars)
not good for
showing
distributions

Use bar charts
only to show
class counts.

What is wrong with {bar charts + error bars} ?

https://doi.org/10.1371/journal.pbio.1002128
https://doi.org/10.1371/journal.pbio.1002128

Histograms

Overlapping

Stacked

Density plots

! The mode of a distribution is an infinitesimal concept.
! Need either an infinite amount of data or choose smoothing / binning bandwidth
! Number of modes (let alone their positions) can change under non-linear data

transformations

Non-linear transformations change the shape of a density

0

20

40

60

−2 −1 0 1 2
sx

ind
ex

The empirical cumulative distribution

���� ������� �������� �� � 15

information on how much data was used to estimate them, and plots like Figure 3.21
can be especially problematic if the sample sizes for the curves di�er.

0

20

40

60

−2 −1 0 1 2
sx

in
de
x

Figure 3.22: Sorted values of simdata versus
their index. This is the empirical cumulative
distribution function of simdata.

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0 12.5
value

y

gene
Fgf4

Gata4

Gata6

Sox2

Figure 3.23: Empirical cumulative distribution
functions (ECDF).

3.6.6 ECDF plots

The mathematically most convenient way to describe the distribution of a one-
dimensional random variableX is its cumulative distribution function (CDF), i. e.,
the function defined by

F (x) = P(X x), (3.1)

where x takes all values along the real axis. The density ofX is then the derivative of
F , if it exists13. The finite sample version of the probability (3.1) is called the empiri-

13 By its definition, F tends to 0 for small x
(x ! �1) and to 1 for large x (x ! +1).

cal cumulative distribution function (ECDF),

Fn(x) =
number of i for which xi x

n
=
1
n

nX

i=1
(x xi), (3.2)

where x1, . . . ,xn denote a sample of n draws fromX and is the indicator function,
i.e., the function that takes the value 1 if the expression in its argument is true and 0
otherwise. If this sounds abstract, we can get a perhaps more intuitive understanding
from the following simple example (Figure 3.22):
simdata = rnorm(70)
tibble(index = seq(along = simdata),

sx = sort(simdata)) %>%

ggplot(aes(x = sx, y = index)) + geom_step()

Plotting the sorted values against their ranks gives the essential features of the
ECDF. The ECDFs of our data are shown in Figure 3.23.
ggplot(genes, aes(x = value, color = gene)) + stat_ecdf()

The ECDF has several nice properties:

• It is lossless: the ECDF Fn(x) contains all the information contained in the original
sample x1, . . . ,xn , except for the order of the values, which is assumed to be
unimportant.

• As n grows, the ECDF Fn(x) converges to the true CDF F (x). Even for limited sam-
ple sizes n, the di�erence between the two functions tends to be small. Note that
this is not the case for the empirical density! Without smoothing, the empiri-
cal density of a finite sample is a sum of Dirac delta functions, which is di�cult
to visualize and quite di�erent from any underlying smooth, true density. With
smoothing, the di�erence can be less pronounced, but is di�cult to control, as we
discussed above.

3.6.7 The effect of transformations on densities

It is tempting to look at histograms or density plots and inspect them for evidence of
bimodality (or multimodality) as an indication of some underlying biological phe-

These methods use a handful of parameters: an average overall mutation
frequency for a cancer type; and a few parameters about the relative
frequencies of different categories of mutations (small insertions/
deletions and transitions versus transversions at CpG dinucleotides,
other C:G base pairs and A:T base pairs). Average values of these
parameters are typically estimated from the samples under study.
Various efforts, by us and others, have recently began to incorporate
sample-specific mutation rates into the analysis3,9.

We proposed that the problem might be due to heterogeneity in the
mutational processes in cancer. Whereas it is obvious that assuming an
average mutation frequency that is too low will lead to spuriously
significant findings, it is less well appreciated that using the correct
average rate but failing to account for heterogeneity in the mutational
process can also lead to incorrect results. To illustrate this point, we
compared two simple scenarios both sharing the same average muta-
tion frequency: (1) a constant frequency of 10 mutations per Mb (10/
Mb) across all genes, versus (2) frequencies of 4/Mb, 8/Mb and 20/Mb
in 25%, 50% and 25% of genes, respectively (Supplementary Fig. 1). If
the second case is analysed under the erroneous assumption of a
constant rate, many of the highly mutable genes will falsely be declared
to be associated with cancer. Notably, the problem grows with sample
size: because the threshold for statistical significance decreases with
sample size, modest deviations due to an erroneous model are declared
significant. For the same reason, the problem is also more pronounced
in tumour types with higher mutation rates. Heterogeneity in mutation
frequencies across patients can also lead to inaccurate results, including
the potential to produce both false-positive, as described earlier, and
false-negative results if the baseline frequency is overestimated.

We therefore set out to study heterogeneity in mutation rates, using
a data set of 3,083 tumour–normal pairs across 27 tumour types, for
which the whole-exome sequence was available for 2,957 and the
whole-genome sequence was available for 126 (Supplementary Table 2).
Approximately 92% of the samples were sequenced at the Broad
Institute and thus were processed using a uniform experimental and
analytical pipeline (see Methods). In this data set, an average of 30 Mb

of coding sequence per sample was covered to adequate depth for
mutation detection, yielding a total of 373,909 non-silent coding muta-
tions or an average of 4.0/Mb per sample (median of 44 non-silent
coding mutations per sample, or 1.5/Mb).

We analysed three types of heterogeneity, with the aim of achieving
more accurate detection of cancer-associated genes. First, we analysed
heterogeneity across patients with a given cancer type. Analysis of the
27 cancer types revealed that the median frequency of non-synonymous
mutations varied by more than 1,000-fold across cancer types (Fig. 1).
About half of the variation in mutation frequencies (measured on a
logarithmic scale) can be explained by tissue type of origin. Paediatric
cancers showed frequencies as low as 0.1/Mb (approximately one
change across the entire exome), whereas at the opposite extreme,
melanoma and lung cancer exceeded 100/Mb. The highest mutation
frequencies are in some cases attributable to extensive exposure to well
known carcinogens, such as ultraviolet radiation in the case of mela-
noma and tobacco smoke in the case of lung cancers.

More surprisingly, mutation frequencies varied markedly across
patients within a cancer type. In melanoma and lung cancer, the fre-
quency ranged across 0.1–100/Mb. Despite the low median frequency
in acute myeloid leukaemia (AML; 0.37/Mb), the patient-specific fre-
quencies similarly spanned three orders of magnitude, from 0.01 to 10/
Mb. Variation may in some cases be due to key biological factors, such as
melanomas not attributed to ultraviolet exposure or on unexposed skin,
colon cancers with or without mismatch repair defects3, or head and
neck tumours with viral or non-viral origin5 (Supplementary Fig. 2).

Second, after analysing total mutation frequency, we analysed het-
erogeneity in the mutational spectrum of the tumours. Starting with all
96 possible mutations (12 mutations at a base times 16 possible flank-
ing bases, then collapsed by strand symmetry), we used non-negative
matrix factorization (NMF) to reduce the dimensionality, with each
spectrum represented as a linear combination of six basic spectra
(Methods). We represented the mutational spectrum of each tumour
on a circular plot, with distance from the origin representing total
mutation rate and angle representing the relative contribution of the

0.01

0.1

1

10

100

1,000

R
ha

bd
oi

d
tu

m
ou

r

Ew
in

g
sa

rc
om

a

Th
yr

oi
d

A
M

L

M
ed

ul
lo

bl
as

to
m

a

C
ar

ci
no

id

N
eu

ro
bl

as
to

m
a

P
ro

st
at

e

C
LL

Lo
w

-g
ra

de
 g

lio
m

a

B
re

as
t

P
an

cr
ea

s

M
ul

tip
le

 m
ye

lo
m

a

K
id

ne
y

cl
ea

r c
el

l

K
id

ne
y

pa
pi

lla
ry

 c
el

l

O
va

ria
n

G
lio

bl
as

to
m

a
m

ul
tif

or
m

e

C
er

vi
ca

l

D
LB

C
L

H
ea

d
an

d
ne

ck

C
ol

or
ec

ta
l

O
es

op
ha

ge
al

ad
en

oc
ar

ci
no

m
a

S
to

m
ac

h

B
la

dd
er

Lu
ng

 a
de

no
-

ca
rc

in
om

a
Lu

ng
 s

qu
am

ou
s

ce
ll

ca
rc

in
om

a

M
el

an
om

a

S
om

at
ic

 m
ut

at
io

n
fre

qu
en

cy
 (/

M
b)

n = 22 20 52 134 26 23 81 227 91 57 121 13 63 214 11 394 219 20 49 181 231 76 88 35 335 179 121

C→T
C→A
C→G
T→C
T→A
T→G

Figure 1 | Somatic mutation frequencies observed in exomes from 3,083
tumour–normal pairs. Each dot corresponds to a tumour–normal pair, with
vertical position indicating the total frequency of somatic mutations in the
exome. Tumour types are ordered by their median somatic mutation
frequency, with the lowest frequencies (left) found in haematological and
paediatric tumours, and the highest (right) in tumours induced by carcinogens

such as tobacco smoke and ultraviolet light. Mutation frequencies vary more
than 1,000-fold between lowest and highest across different cancers and also
within several tumour types. The bottom panel shows the relative proportions
of the six different possible base-pair substitutions, as indicated in the legend on
the left. See also Supplementary Table 2.

LETTER RESEARCH

1 1 J U L Y 2 0 1 3 | V O L 4 9 9 | N A T U R E | 2 1 5

Macmillan Publishers Limited. All rights reserved©2013

LETTER
doi:10.1038/nature12213

Mutational heterogeneity in cancer and the search
for new cancer-associated genes
Michael S. Lawrence1*, Petar Stojanov1,2*, Paz Polak1,3,4*, Gregory V. Kryukov1,3,4, Kristian Cibulskis1, Andrey Sivachenko1,
Scott L. Carter1, Chip Stewart1, Craig H. Mermel1,5, Steven A. Roberts6, Adam Kiezun1, Peter S. Hammerman1,2, Aaron McKenna1,7,
Yotam Drier1,3,5,8, Lihua Zou1, Alex H. Ramos1, Trevor J. Pugh1,2,3, Nicolas Stransky1,9, Elena Helman1,10, Jaegil Kim1,
Carrie Sougnez1, Lauren Ambrogio1, Elizabeth Nickerson1, Erica Shefler1, Maria L. Cortés1, Daniel Auclair1, Gordon Saksena1,
Douglas Voet1, Michael Noble1, Daniel DiCara1, Pei Lin1, Lee Lichtenstein1, David I. Heiman1, Timothy Fennell1,
Marcin Imielinski1,5, Bryan Hernandez1, Eran Hodis1,2, Sylvan Baca1,2, Austin M. Dulak1,2, Jens Lohr1,2, Dan-Avi Landau1,2,11,
Catherine J. Wu2,3, Jorge Melendez-Zajgla12, Alfredo Hidalgo-Miranda12, Amnon Koren1,3, Steven A. McCarroll1,3, Jaume Mora13,
Ryan S. Lee2,3,14, Brian Crompton2,14, Robert Onofrio1, Melissa Parkin1, Wendy Winckler1, Kristin Ardlie1, Stacey B. Gabriel1,
Charles W. M. Roberts2,3,14, Jaclyn A. Biegel15, Kimberly Stegmaier1,2,14, Adam J. Bass1,2,3, Levi A. Garraway1,2,3,
Matthew Meyerson1,2,3, Todd R. Golub1,2,3,8, Dmitry A. Gordenin6, Shamil Sunyaev1,3,4, Eric S. Lander1,3,10 & Gad Getz1,5

Major international projects are underway that are aimed at creating
a comprehensive catalogue of all the genes responsible for the ini-
tiation and progression of cancer1–9. These studies involve the
sequencing of matched tumour–normal samples followed by math-
ematical analysis to identify those genes in which mutations occur
more frequently than expected by random chance. Here we describe
a fundamental problem with cancer genome studies: as the sample
size increases, the list of putatively significant genes produced by
current analytical methods burgeons into the hundreds. The list
includes many implausible genes (such as those encoding olfactory
receptors and the muscle protein titin), suggesting extensive false-
positive findings that overshadow true driver events. We show that
this problem stems largely from mutational heterogeneity and provide
a novel analytical methodology, MutSigCV, for resolving the problem.
We apply MutSigCV to exome sequences from 3,083 tumour–normal
pairs and discover extraordinary variation in mutation frequency
and spectrum within cancer types, which sheds light on mutational
processes and disease aetiology, and in mutation frequency across
the genome, which is strongly correlated with DNA replication
timing and also with transcriptional activity. By incorporating
mutational heterogeneity into the analyses, MutSigCV is able to
eliminate most of the apparent artefactual findings and enable the
identification of genes truly associated with cancer.

Recent cancer genome studies have led to the identification of scores
of cancer-associated genes in glioblastoma1, ovarian2, colorectal3, lung4,
head and neck5, multiple myeloma6, chronic lymphocytic leukaemia7,
diffuse large B-cell lymphoma (DLBCL)8,9 and many other cancers.
Studies are now underway through The Cancer Genome Atlas (TCGA)
(http://cancergenome.nih.gov/) and the International Cancer Genome
Consortium (http://www.icgc.org/) to create a comprehensive cata-
logue of significantly mutated genes across all major cancer types.

The expectation has been that larger sample sizes will increase the
power both to detect true cancer driver genes (sensitivity) and to distin-
guish them from the background of random mutations (specificity).
Alarmingly, recent results seem to show the opposite phenomenon: with
large sample sizes, the list of apparently significant cancer-associated
genes grows rapidly and implausibly. For example, when we applied
current analytical methods to whole-exome sequence data from 178

tumour–normal pairs of lung squamous cell carcinoma10, a total of 450
genes (Supplementary Table 1 and Supplementary Methods 2) were
found to be mutated at a significant frequency (false-discovery rate
q , 0.1). Although the list contains some genes known to be associated
with cancer, many of the genes seem highly suspicious on the basis of
their biological function or genomic properties. Almost a quarter (101/
450) of the putative significant genes encode olfactory receptors. The
list is also highly enriched for genes encoding extremely large proteins,
including more than one-fifth of the 83 genes encoding proteins with
.4,000 amino acids (P , 10211, Fisher’s exact test). These include the
two longest human proteins, the muscle protein titin (36,800 amino
acids) and the membrane-associated mucin MUC16 (14,500 amino
acids), as well as another mucin (MUC4), cardiac ryanodine receptors
(RYR2, RYR3), cytoskeletal dyneins (DNAH5, DNAH11) and the neur-
onal synaptic vesicle protein piccolo (PCLO). The prominence of these
genes is not simply the consequence of their long coding regions,
because the statistical tests already account for the larger target size.
Furthermore, the list also contains genes with very long introns, includ-
ing one-sixth of the 73 genes spanning a genomic region of .1 mega-
base (Mb) (P , 1026), such as those encoding cub- and sushi-domain
proteins (CSMD1, CSMD3), and many neuronal proteins, such as the
neurexins NRXN1, NRXN4 (also known as CNTNAP2), CNTNAP4
and CNTNAP5, the neural adhesion molecule CNTN5, and the Parkinson’s
disease protein PARK2. When we performed similar analyses for several
other cancer types with many samples, we similarly obtained large lists
including many of the same genes (data not shown).

After recognizing the problem of apparent false-positive findings,
we reviewed the published literature and found that some of these
potentially spurious genes have already been nominated as cancer-associated
genes in recently published cancer genome studies: for example, LRP1B
in glioblastoma2 and lung adenocarcinoma1,4; CSMD3 in ovarian cancer2;
PCLO in DLBCL9; MUC16 in lung squamous carcinoma11, breast cancer12

and DLBCL8; MUC4 in melanoma13; olfactory receptor OR2L13 in glio-
blastoma14; and TTN in breast cancer12 and other tumour types15. We
therefore set out to understand the source of the problem.

Analytical approaches in wide use today1–9,13–16 identify as signifi-
cantly mutated those genes harbouring more mutations than expected
given the average background mutation frequency for the cancer type.

*These authors contributed equally to this work.

1The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA. 2Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. 3Harvard Medical School, Boston, Massachusetts
02115, USA. 4Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA. 5Massachusetts General Hospital, Boston, Massachusetts 02114, USA. 6Laboratory of Molecular Genetics, National
Institute of Environmental Health Sciences, NIH, DHHS, Durham, North Carolina 27709, USA. 7Genome Sciences, University of Washington, Seattle, Washington 98195, USA. 8Howard Hughes Medical
Institute, Chevy Chase, Maryland 20815, USA. 9Blueprint Medicines, Cambridge, Massachusetts 02142, USA. 10Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 11Yale
Cancer Center, Department of Hematology, New Haven, Connecticut 06510, USA. 12Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico. 13Department of Pediatric Oncology, Hospital
Sant Joan de Déu, Barcelona 08950, Spain. 14Boston Children’s Hospital, Boston, Massachusetts 02115, USA. 15Children’s Hospital, Philadelphia, Pennsylvania 19104, USA.

2 1 4 | N A T U R E | V O L 4 9 9 | 1 1 J U L Y 2 0 1 3

Macmillan Publishers Limited. All rights reserved©2013

Summary: Visualizing distributions in 1D 72 MODERN STATISTICS FOR MODERN BIOLOGY

p <- ggplot(genes, aes(x = gene, y = value, fill = gene))

p + geom_boxplot()

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●
●
●

●

●

●●
●

●

●

●

●

●

●

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.16: Boxplots.

Compared to the barplots, this takes a similar amount of space, but is
much more informative. In Figure ?? we see that two of the genes (Gata4,
Gata6) have relatively concentrated distributions, with only a few data points
venturing out to the direction of higher values. For Fgf4, we see that the
distribution is right-skewed: the median, indicated by the horizontal black bar
within the box is closer to the lower (or left) side of the box. Analogously, for
Sox2 the distribution is left-skewed.

4.6.4 Violin plots

A variation of the boxplot idea, but with an even more direct representation
of the shape of the data distribution, is the violin plot. Here, the shape of the
violin gives a rough impression of the distribution density.

p + geom_violin()

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.17: Violin plots.

4.6.5 Dot plots and beeswarm plots

If the number of data points is not too large, it is possible to show the data
points directly, and it is good practice to do so, compared to using more
abstract summaries.

However, plotting the data directly will often lead to overlapping points,
which can be visually unpleasant, or even obscure the data. We can try to
layout the points so that they are as near possible to their proper locations
without overlap?.

p + geom_dotplot(binaxis = "y", binwidth = 1/6,

stackdir = "center", stackratio = 0.75,

aes(color = gene))

The plot is shown in the left panel of Figure ??. The y-coordinates of the
points are discretized into bins (above we chose a bin size of 1/6), and then
they are stacked next to each other.

A fun alternative is provided by the package beeswarm. It works with base
R graphics and is not directly integrated into ggplot2’s data flows, so we can
either use the base R graphics output, or pass on the point coordinates to
ggplot as follows.

library("beeswarm")

bee <- beeswarm(value ~ gene, data = genes, spacing = 0.7)

72 MODERN STATISTICS FOR MODERN BIOLOGY

p <- ggplot(genes, aes(x = gene, y = value, fill = gene))

p + geom_boxplot()

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●
●
●

●

●

●●
●

●

●

●

●

●

●

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.16: Boxplots.

Compared to the barplots, this takes a similar amount of space, but is
much more informative. In Figure ?? we see that two of the genes (Gata4,
Gata6) have relatively concentrated distributions, with only a few data points
venturing out to the direction of higher values. For Fgf4, we see that the
distribution is right-skewed: the median, indicated by the horizontal black bar
within the box is closer to the lower (or left) side of the box. Analogously, for
Sox2 the distribution is left-skewed.

4.6.4 Violin plots

A variation of the boxplot idea, but with an even more direct representation
of the shape of the data distribution, is the violin plot. Here, the shape of the
violin gives a rough impression of the distribution density.

p + geom_violin()

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.17: Violin plots.

4.6.5 Dot plots and beeswarm plots

If the number of data points is not too large, it is possible to show the data
points directly, and it is good practice to do so, compared to using more
abstract summaries.

However, plotting the data directly will often lead to overlapping points,
which can be visually unpleasant, or even obscure the data. We can try to
layout the points so that they are as near possible to their proper locations
without overlap?.

p + geom_dotplot(binaxis = "y", binwidth = 1/6,

stackdir = "center", stackratio = 0.75,

aes(color = gene))

The plot is shown in the left panel of Figure ??. The y-coordinates of the
points are discretized into bins (above we chose a bin size of 1/6), and then
they are stacked next to each other.

A fun alternative is provided by the package beeswarm. It works with base
R graphics and is not directly integrated into ggplot2’s data flows, so we can
either use the base R graphics output, or pass on the point coordinates to
ggplot as follows.

library("beeswarm")

bee <- beeswarm(value ~ gene, data = genes, spacing = 0.7)

HIGH QUALITY GRAPHICS IN R 73

ggplot(bee, aes(x = x, y = y, colour = x.orig)) +

geom_point(shape = 19) + xlab("gene") + ylab("value") +

scale_fill_manual(values = probes)

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●

●●
●●●●

●
●●

●

●

●

●

●
●

●
●●●
●

●●●●
●●
●●

●●
●●
●●
●

●●●

●●●
●●●

●●●●●
●

●
●
●

●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●

●●●

●●●●
●●
●●

●

●●
●
●●
●

●●

●●
●●

●●
●

●

●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●
●●●●●

●

●●
●

●●●
●●
●

●●

●●

●
●

●

●●
●

●●●●●
●●●

●●

●●●

●●●

●

●●●

●●
●●

●

●●
●
●●

●●●●●●
●●

●●●
●

●●●●
●●●

●●●●●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●●●●●●●
●●●●●●●●

●●●

●●●

●

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
●

●

●

●

Fgf4
Gata4
Gata6
Sox2

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

● ●
● ●

●●●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●
●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●● ●

●

●

●
●

●
●

●●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●
● ●●

●

●

●●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

2.5

5.0

7.5

10.0

12.5

1 2 3 4
gene

va
lu
e

x.orig
●

●

●

●

Fgf4
Gata4
Gata6
Sox2

Figure 4.18: Left: dot plots, made us-
ing geom_dotplot from ggplot2. Right:
beeswarm plots, with layout obtained via
the beeswarm package and plotted as a
scatterplot with ggplot.

The plot is shown in the right panel of Figure ??. The default layout method
used by beeswarm is called swarm. It places points in increasing order. If a
point would overlap an existing point, it is shifted sideways (along the x-axis)
by a minimal amount sufficient to avoid overlap.

As you have seen in the above code examples, some twiddling with layout
parameters is usually needed to make a dot plot or a beeswarm plot look good
for a particular dataset.

4.6.6 Density plots

Yet another way to represent the same data is by lines plots of the density
plots

ggplot(genes, aes(x = value, colour = gene)) + geom_density()

Density estimation has a number of complications, and you can see these
in Figure ??. In particular, the need for choosing a smoothing window. A
window size that is small enough to capture peaks in the dense regions of
the data may lead to instable (“wiggly”) estimates elsewhere; if the window
is made bigger, pronounced features of the density may be smoothed out.
Moreover, the density lines do not convey the information on how much data
was used to estimate them, and plots like Figure ?? can become especially
problematic if the sample sizes for the curves differ.

0.00

0.25

0.50

0.75

2.5 5.0 7.5 10.0 12.5
value

de
ns
ity

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.19: Density plots.

HIGH QUALITY GRAPHICS IN R 73

ggplot(bee, aes(x = x, y = y, colour = x.orig)) +

geom_point(shape = 19) + xlab("gene") + ylab("value") +

scale_fill_manual(values = probes)

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●

●●
●●●●

●
●●

●

●

●

●

●
●

●
●●●
●

●●●●
●●
●●

●●
●●
●●
●

●●●

●●●
●●●

●●●●●
●

●
●
●

●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●

●●●

●●●●
●●
●●

●

●●
●
●●
●

●●

●●
●●

●●
●

●

●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●
●●●●●

●

●●
●

●●●
●●
●

●●

●●

●
●

●

●●
●

●●●●●
●●●

●●

●●●

●●●

●

●●●

●●
●●

●

●●
●
●●

●●●●●●
●●

●●●
●

●●●●
●●●

●●●●●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●●●●●●●
●●●●●●●●

●●●

●●●

●

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
●

●

●

●

Fgf4
Gata4
Gata6
Sox2

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

● ●
● ●

●●●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●
●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●● ●

●

●

●
●

●
●

●●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●
● ●●

●

●

●●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

2.5

5.0

7.5

10.0

12.5

1 2 3 4
gene

va
lu
e

x.orig
●

●

●

●

Fgf4
Gata4
Gata6
Sox2

Figure 4.18: Left: dot plots, made us-
ing geom_dotplot from ggplot2. Right:
beeswarm plots, with layout obtained via
the beeswarm package and plotted as a
scatterplot with ggplot.

The plot is shown in the right panel of Figure ??. The default layout method
used by beeswarm is called swarm. It places points in increasing order. If a
point would overlap an existing point, it is shifted sideways (along the x-axis)
by a minimal amount sufficient to avoid overlap.

As you have seen in the above code examples, some twiddling with layout
parameters is usually needed to make a dot plot or a beeswarm plot look good
for a particular dataset.

4.6.6 Density plots

Yet another way to represent the same data is by lines plots of the density
plots

ggplot(genes, aes(x = value, colour = gene)) + geom_density()

Density estimation has a number of complications, and you can see these
in Figure ??. In particular, the need for choosing a smoothing window. A
window size that is small enough to capture peaks in the dense regions of
the data may lead to instable (“wiggly”) estimates elsewhere; if the window
is made bigger, pronounced features of the density may be smoothed out.
Moreover, the density lines do not convey the information on how much data
was used to estimate them, and plots like Figure ?? can become especially
problematic if the sample sizes for the curves differ.

0.00

0.25

0.50

0.75

2.5 5.0 7.5 10.0 12.5
value

de
ns
ity

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.19: Density plots.

74 MODERN STATISTICS FOR MODERN BIOLOGY

4.6.7 ECDF plots

The mathematically most robust way to describe the distribution of a one-
dimensional random variable X is its cumulative distribution function (CDF),
i. e., the function

F(x) = P(X x), (4.1)

where x takes all values along the real axis. The density of X is then the
derivative of F, if it exists9. The definition of the CDF can also be applied 9 By its definition, F tends to 0 for small x

(x ! �•) and to 1 for large x (x ! +•).to finite samples of X, i. e., samples x1, . . . , xn. The empirical cumulative
distribution function (ECDF) is simply

Fn(x) =
1
n

n

Â
i=1

xxi . (4.2)

An important property is that even for limited sample sizes n, the ECDF Fn

is not very far from the CDF, F. This is not the case for the empirical density!
Without smoothing, the empirical density of a finite sample is a sum of Dirac
delta functions, which is difficult to visualize and quite different from any
underlying smooth, true density. With smoothing, the difference can be less
pronounced, but is difficult to control, as discussed above.

ggplot(genes, aes(x = value, colour = gene)) + stat_ecdf()

0.00

0.25

0.50

0.75

1.00

5 10
value

y

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.20: Empirical cumulative distribution
functions (ECDF).

4.6.8 Data tidying II - Wide vs long format

Let us revisit the melt command from above. In the resulting data.frame
genes, each row corresponds to exactly one measured value, stored in the
column value. Then there are additional columns probe and sample, which
store the associated covariates. Compare this to the following data.frame (for
space reasons we print only the first five columns):

as.data.frame(exprs(x)[probes,])[, 1:5]

1 E3.25 2 E3.25 3 E3.25 4 E3.25 5 E3.25

1420085_at 3.03 9.29 2.94 9.72 8.92

1418863_at 4.84 5.53 4.42 5.98 4.92

1425463_at 5.50 6.16 4.58 4.75 4.63

1416967_at 1.73 9.70 4.16 9.54 8.71

This data.frame has several columns of data, one for each sample (an-
notated by the column names). Its rows correspond to the four probes,
annotated by the row names. This is an example for a data table in wide
format.

Now suppose we want to store somewhere not only the probe identifiers
but also the associated gene symbols. We could stick them as an additional

2D data plots

2D data plots

Scatterplots (x,y)-point plots

2D data plots

Scatterplots (x,y)-point plots

2D data plots

Scatterplots (x,y)-point plots

Line plots (x,y)-line plots

2D data plots

Scatterplots (x,y)-point plots

Line plots (x,y)-line plots

HIGH QUALITY GRAPHICS IN R 77

Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.

2D density requires the choice of
bandwidth; obscures the sample
size (i.e. the uncertainty of the
estimate)

Showing distributions in 2D

HIGH QUALITY GRAPHICS IN R 75

column into the wide format data.frame, and perhaps also throw in the genes’
ENSEMBL identifier for good measure. But now we immediately see the
problem: the data.frame now has some columns that represent different
samples, and others that refer to information for all samples (the gene symbol
and identifier) and we somehow have to "know" this when interpreting the
data.frame. This is what Hadley Wickham calls untidy data10. In contrast, in 10 There are many different ways for data to

be untidy.the tidy data.frame genes, we can add these columns, yet still know that each
row forms exactly one observation, and all information associated with that
observation is in the same row.

In tidy data?,

1. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.

A potential drawback is efficiency: even though there are only 4 probe –
gene symbol relationships, we are now storing them 404 times in the rows
of the data.frame genes. Moreover, there is no standardisation: we chose
to call this column symbol, but the next person might call it Symbol or even
something completely different, and when we find a data.frame that was
made by someone else and that contains a column symbol, we can hope,
but have no guarantee, that these are valid gene symbols. Addressing such
issues is behind the object-oriented design of the specialized data structures
in Bioconductor, such as the ExpressionSet class.

4.7 2D visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in
Figure ??), associations between variables (as in Figure ??), or paired data
(e. g., a disease biomarker in several patients before and after treatment). We
use the two dimensions of our plotting paper, or screen, to represent the two
variables.

Figure 4.21: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at differential expression between a wildtype and an
FGF4-KO sample.

scp <- ggplot(dfx, aes(x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column
names (sample names) in the data.frame dfx, which we created above. Since
they contain special characters (spaces, parentheses, hyphen) and start with
numerals, we need to enclose them with the downward sloping quotes to
make them syntactically digestible for R. The plot is shown in Figure ??. We

HIGH QUALITY GRAPHICS IN R 75

column into the wide format data.frame, and perhaps also throw in the genes’
ENSEMBL identifier for good measure. But now we immediately see the
problem: the data.frame now has some columns that represent different
samples, and others that refer to information for all samples (the gene symbol
and identifier) and we somehow have to "know" this when interpreting the
data.frame. This is what Hadley Wickham calls untidy data10. In contrast, in 10 There are many different ways for data to

be untidy.the tidy data.frame genes, we can add these columns, yet still know that each
row forms exactly one observation, and all information associated with that
observation is in the same row.

In tidy data?,

1. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.

A potential drawback is efficiency: even though there are only 4 probe –
gene symbol relationships, we are now storing them 404 times in the rows
of the data.frame genes. Moreover, there is no standardisation: we chose
to call this column symbol, but the next person might call it Symbol or even
something completely different, and when we find a data.frame that was
made by someone else and that contains a column symbol, we can hope,
but have no guarantee, that these are valid gene symbols. Addressing such
issues is behind the object-oriented design of the specialized data structures
in Bioconductor, such as the ExpressionSet class.

4.7 2D visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in
Figure ??), associations between variables (as in Figure ??), or paired data
(e. g., a disease biomarker in several patients before and after treatment). We
use the two dimensions of our plotting paper, or screen, to represent the two
variables.

Figure 4.21: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at differential expression between a wildtype and an
FGF4-KO sample.

scp <- ggplot(dfx, aes(x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column
names (sample names) in the data.frame dfx, which we created above. Since
they contain special characters (spaces, parentheses, hyphen) and start with
numerals, we need to enclose them with the downward sloping quotes to
make them syntactically digestible for R. The plot is shown in Figure ??. We

Showing distributions in 2D

HIGH QUALITY GRAPHICS IN R 75

column into the wide format data.frame, and perhaps also throw in the genes’
ENSEMBL identifier for good measure. But now we immediately see the
problem: the data.frame now has some columns that represent different
samples, and others that refer to information for all samples (the gene symbol
and identifier) and we somehow have to "know" this when interpreting the
data.frame. This is what Hadley Wickham calls untidy data10. In contrast, in 10 There are many different ways for data to

be untidy.the tidy data.frame genes, we can add these columns, yet still know that each
row forms exactly one observation, and all information associated with that
observation is in the same row.

In tidy data?,

1. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.

A potential drawback is efficiency: even though there are only 4 probe –
gene symbol relationships, we are now storing them 404 times in the rows
of the data.frame genes. Moreover, there is no standardisation: we chose
to call this column symbol, but the next person might call it Symbol or even
something completely different, and when we find a data.frame that was
made by someone else and that contains a column symbol, we can hope,
but have no guarantee, that these are valid gene symbols. Addressing such
issues is behind the object-oriented design of the specialized data structures
in Bioconductor, such as the ExpressionSet class.

4.7 2D visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in
Figure ??), associations between variables (as in Figure ??), or paired data
(e. g., a disease biomarker in several patients before and after treatment). We
use the two dimensions of our plotting paper, or screen, to represent the two
variables.

Figure 4.21: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at differential expression between a wildtype and an
FGF4-KO sample.

scp <- ggplot(dfx, aes(x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column
names (sample names) in the data.frame dfx, which we created above. Since
they contain special characters (spaces, parentheses, hyphen) and start with
numerals, we need to enclose them with the downward sloping quotes to
make them syntactically digestible for R. The plot is shown in Figure ??. We

HIGH QUALITY GRAPHICS IN R 75

column into the wide format data.frame, and perhaps also throw in the genes’
ENSEMBL identifier for good measure. But now we immediately see the
problem: the data.frame now has some columns that represent different
samples, and others that refer to information for all samples (the gene symbol
and identifier) and we somehow have to "know" this when interpreting the
data.frame. This is what Hadley Wickham calls untidy data10. In contrast, in 10 There are many different ways for data to

be untidy.the tidy data.frame genes, we can add these columns, yet still know that each
row forms exactly one observation, and all information associated with that
observation is in the same row.

In tidy data?,

1. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.

A potential drawback is efficiency: even though there are only 4 probe –
gene symbol relationships, we are now storing them 404 times in the rows
of the data.frame genes. Moreover, there is no standardisation: we chose
to call this column symbol, but the next person might call it Symbol or even
something completely different, and when we find a data.frame that was
made by someone else and that contains a column symbol, we can hope,
but have no guarantee, that these are valid gene symbols. Addressing such
issues is behind the object-oriented design of the specialized data structures
in Bioconductor, such as the ExpressionSet class.

4.7 2D visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in
Figure ??), associations between variables (as in Figure ??), or paired data
(e. g., a disease biomarker in several patients before and after treatment). We
use the two dimensions of our plotting paper, or screen, to represent the two
variables.

Figure 4.21: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at differential expression between a wildtype and an
FGF4-KO sample.

scp <- ggplot(dfx, aes(x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column
names (sample names) in the data.frame dfx, which we created above. Since
they contain special characters (spaces, parentheses, hyphen) and start with
numerals, we need to enclose them with the downward sloping quotes to
make them syntactically digestible for R. The plot is shown in Figure ??. We

76 MODERN STATISTICS FOR MODERN BIOLOGY

get a dense point cloud that we can try and interpret on the outskirts of the
cloud, but we really have no idea visually how the data are distributed within
the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency
(alpha value) of the points by modifying the alpha parameter of geom_point
(Figure ??).

Figure 4.22: As Figure ??, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes(fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,

76 MODERN STATISTICS FOR MODERN BIOLOGY

get a dense point cloud that we can try and interpret on the outskirts of the
cloud, but we really have no idea visually how the data are distributed within
the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency
(alpha value) of the points by modifying the alpha parameter of geom_point
(Figure ??).

Figure 4.22: As Figure ??, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes(fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,

Showing distributions in 2D

HIGH QUALITY GRAPHICS IN R 75

column into the wide format data.frame, and perhaps also throw in the genes’
ENSEMBL identifier for good measure. But now we immediately see the
problem: the data.frame now has some columns that represent different
samples, and others that refer to information for all samples (the gene symbol
and identifier) and we somehow have to "know" this when interpreting the
data.frame. This is what Hadley Wickham calls untidy data10. In contrast, in 10 There are many different ways for data to

be untidy.the tidy data.frame genes, we can add these columns, yet still know that each
row forms exactly one observation, and all information associated with that
observation is in the same row.

In tidy data?,

1. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.

A potential drawback is efficiency: even though there are only 4 probe –
gene symbol relationships, we are now storing them 404 times in the rows
of the data.frame genes. Moreover, there is no standardisation: we chose
to call this column symbol, but the next person might call it Symbol or even
something completely different, and when we find a data.frame that was
made by someone else and that contains a column symbol, we can hope,
but have no guarantee, that these are valid gene symbols. Addressing such
issues is behind the object-oriented design of the specialized data structures
in Bioconductor, such as the ExpressionSet class.

4.7 2D visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in
Figure ??), associations between variables (as in Figure ??), or paired data
(e. g., a disease biomarker in several patients before and after treatment). We
use the two dimensions of our plotting paper, or screen, to represent the two
variables.

Figure 4.21: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at differential expression between a wildtype and an
FGF4-KO sample.

scp <- ggplot(dfx, aes(x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column
names (sample names) in the data.frame dfx, which we created above. Since
they contain special characters (spaces, parentheses, hyphen) and start with
numerals, we need to enclose them with the downward sloping quotes to
make them syntactically digestible for R. The plot is shown in Figure ??. We

HIGH QUALITY GRAPHICS IN R 75

column into the wide format data.frame, and perhaps also throw in the genes’
ENSEMBL identifier for good measure. But now we immediately see the
problem: the data.frame now has some columns that represent different
samples, and others that refer to information for all samples (the gene symbol
and identifier) and we somehow have to "know" this when interpreting the
data.frame. This is what Hadley Wickham calls untidy data10. In contrast, in 10 There are many different ways for data to

be untidy.the tidy data.frame genes, we can add these columns, yet still know that each
row forms exactly one observation, and all information associated with that
observation is in the same row.

In tidy data?,

1. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.

A potential drawback is efficiency: even though there are only 4 probe –
gene symbol relationships, we are now storing them 404 times in the rows
of the data.frame genes. Moreover, there is no standardisation: we chose
to call this column symbol, but the next person might call it Symbol or even
something completely different, and when we find a data.frame that was
made by someone else and that contains a column symbol, we can hope,
but have no guarantee, that these are valid gene symbols. Addressing such
issues is behind the object-oriented design of the specialized data structures
in Bioconductor, such as the ExpressionSet class.

4.7 2D visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in
Figure ??), associations between variables (as in Figure ??), or paired data
(e. g., a disease biomarker in several patients before and after treatment). We
use the two dimensions of our plotting paper, or screen, to represent the two
variables.

Figure 4.21: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at differential expression between a wildtype and an
FGF4-KO sample.

scp <- ggplot(dfx, aes(x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column
names (sample names) in the data.frame dfx, which we created above. Since
they contain special characters (spaces, parentheses, hyphen) and start with
numerals, we need to enclose them with the downward sloping quotes to
make them syntactically digestible for R. The plot is shown in Figure ??. We

76 MODERN STATISTICS FOR MODERN BIOLOGY

get a dense point cloud that we can try and interpret on the outskirts of the
cloud, but we really have no idea visually how the data are distributed within
the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency
(alpha value) of the points by modifying the alpha parameter of geom_point
(Figure ??).

Figure 4.22: As Figure ??, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes(fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,

76 MODERN STATISTICS FOR MODERN BIOLOGY

get a dense point cloud that we can try and interpret on the outskirts of the
cloud, but we really have no idea visually how the data are distributed within
the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency
(alpha value) of the points by modifying the alpha parameter of geom_point
(Figure ??).

Figure 4.22: As Figure ??, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes(fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,

76 MODERN STATISTICS FOR MODERN BIOLOGY

get a dense point cloud that we can try and interpret on the outskirts of the
cloud, but we really have no idea visually how the data are distributed within
the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency
(alpha value) of the points by modifying the alpha parameter of geom_point
(Figure ??).

Figure 4.22: As Figure ??, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes(fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,

HIGH QUALITY GRAPHICS IN R 77

Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.

HIGH QUALITY GRAPHICS IN R 77

Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.

HIGH QUALITY GRAPHICS IN R 77

Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.

binhex is a good, easy to read, option to show 2D density

How to show
more than 2D?

3-5D: aesthetics allow to show more than 2D

geom_point’s
aesthetics
(apart from x and y):
• fill / color
• shape
• size
• alpha

3-5D: aesthetics allow to show more than 2D

geom_point’s
aesthetics
(apart from x and y):
• fill / color
• shape
• size
• alpha

42

Spatial substrate Graphical marks Graphical properties

Unstructured

Quantitative

Nominal (areas)

Ordinal (ordered)

Points

Lines

Areas

Volumes

Size

Color

Shape

Connection

Scale Length Width

Hue Intensity Texture

Orientation

Enclosure Position

A diversity of graphical properties (aesthetics) are available to show dimensions

Marker shapes and colors in R

geom_point’s
aesthetics
(beyond x and y):
• fill / color
• shape
• size
• alpha

Color Usage

82 MODERN STATISTICS FOR MODERN BIOLOGY

4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 23 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).

BrBG
PiYG
PRGn
PuOr
RdBu
RdGyRdYlBu

RdYlGn
Spectral
Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3
Blues
BuGn
BuPu
GnBu

Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

Figure 4.31: RColorBrewer palettes.

display.brewer.all()

We can get information about the available colour palettes from the
data.frame brewer.pal.info.

head(brewer.pal.info)

maxcolors category colorblind

BrBG 11 div TRUE

PiYG 11 div TRUE

PRGn 11 div TRUE

PuOr 11 div TRUE

RdBu 11 div TRUE

RdGy 11 div FALSE

table(brewer.pal.info$category)

##

Default color scheme in base R plot:

Color Usage

82 MODERN STATISTICS FOR MODERN BIOLOGY

4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 23 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).

BrBG
PiYG
PRGn
PuOr
RdBu
RdGyRdYlBu

RdYlGn
Spectral
Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3
Blues
BuGn
BuPu
GnBu

Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

Figure 4.31: RColorBrewer palettes.

display.brewer.all()

We can get information about the available colour palettes from the
data.frame brewer.pal.info.

head(brewer.pal.info)

maxcolors category colorblind

BrBG 11 div TRUE

PiYG 11 div TRUE

PRGn 11 div TRUE

PuOr 11 div TRUE

RdBu 11 div TRUE

RdGy 11 div FALSE

table(brewer.pal.info$category)

##

Default color scheme in base R plot:

Default color scheme in ggplot:

When choosing a coloring scheme, consider these:
• Different requirements for line & area colors
• Many people are red-green color-blind
• Lighter colors tend to make areas look larger than darker colors

→ use colors of equal luminance for filled areas.

Color Usage

82 MODERN STATISTICS FOR MODERN BIOLOGY

4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 23 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).

BrBG
PiYG
PRGn
PuOr
RdBu
RdGyRdYlBu

RdYlGn
Spectral
Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3
Blues
BuGn
BuPu
GnBu

Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

Figure 4.31: RColorBrewer palettes.

display.brewer.all()

We can get information about the available colour palettes from the
data.frame brewer.pal.info.

head(brewer.pal.info)

maxcolors category colorblind

BrBG 11 div TRUE

PiYG 11 div TRUE

PRGn 11 div TRUE

PuOr 11 div TRUE

RdBu 11 div TRUE

RdGy 11 div FALSE

table(brewer.pal.info$category)

##

Default color scheme in base R plot:

Default color scheme in ggplot:

RColorBrewer

BrBG
PiYG
PRGn
PuOr
RdBu
RdGy
RdYlBu
RdYlGn
Spectral

Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3

Blues
BuGn
BuPu
GnBu
Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

qualitative

sequential

diverging

82 MODERN STATISTICS FOR MODERN BIOLOGY

4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 23 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).

BrBG
PiYG
PRGn
PuOr
RdBu
RdGyRdYlBu

RdYlGn
Spectral
Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3
Blues
BuGn
BuPu
GnBu

Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

Figure 4.31: RColorBrewer palettes.

display.brewer.all()

We can get information about the available colour palettes from the
data.frame brewer.pal.info.

head(brewer.pal.info)

maxcolors category colorblind

BrBG 11 div TRUE

PiYG 11 div TRUE

PRGn 11 div TRUE

PuOr 11 div TRUE

RdBu 11 div TRUE

RdGy 11 div FALSE

table(brewer.pal.info$category)

##

Viridis Palettes
Simply add: to your plot

Viridis Palettes
Color scales are designed to be:

• Colorful and Pretty, spanning as wide a palette as possible so as to make
differences easy to see,

• Perceptually uniform, the perceived difference between two colors is
proportional to the Euclidian distance within the color space

• Robust to colorblindness, looks good in grey scale and to people with
common forms of colorblindness

You can hear more about the science behind creating these color scales, on
Walt and Smith’s talk at SciPy 2015.

perceptually uniformnot perceptually uniform

https://www.youtube.com/watch?list=PLYx7XA2nY5Gcpabmu61kKcToLz0FapmHu&v=xAoljeRJ3lU

Be kind to colorblind people

Simple solution: replace greens by blues.
Blues also display better on most monitors than greens.

Colour models

coordinates in
human perception

space

RGB CMYK HSV
HSB

How are colours defined?

Printing, ink

Cyan Magenta Yellow Black
subtractive

Light emitting screens

Red Green Blue
additive

Faceting is useful to show more dimensions
without overcrowding the graph

Faceting is useful to show more dimensions
without overcrowding the graph

Trellis — chart that uses multiple
instances of the same chart

Faceting is useful to show more dimensions
without overcrowding the graph

Trellis — chart that uses multiple
instances of the same chart

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO

●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

HIGH QUALITY GRAPHICS IN R 81

no EPI PE FGF4−KO

●

●

●
●

●
●

●

●

●
●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●
●

●●●

●

●●
●

●

●

●
●

●

●
●
●

● ●●

●
● ●
●

●
●

●

●

●
● ●

●

● ●
●

●

●
●
●

●
●●

●●

●●
●

●

●

4

6

8

10

12

4

6

8

10

12

4

6

8

10

12

E3.25
E3.5

E4.5

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.28: Faceting: the same data as in
Figure ??, split by the categorical variables
Embryonic.day (rows) and lineage
(columns).

ggplot(mutate(dftx, Tdgf1 = cut(X1450989_at, breaks = 4)),

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_wrap(~ Tdgf1, ncol = 2)

We see in Figure ?? that the number of points in the four panel is different,
this is because cut splits into bins of equal length, not equal number of points.
If we want the latter, then we can use quantile in conjunction with cut.

●
●

●

●

●
●

●

● ●
●
●

●
●

●

●

●
● ●

●

●
●

●

● ●

●
●

●

● ●● ●

●

●
●

●
●

●

●
● ●

●

●

●
●

●●

●

●

●
●

●
●

● ●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●●

●

●●
●
●

●

● ●
●

●

●
●
●

● ●●●●

●●
●
●

●

(2.53,5.05] (5.05,7.57]

(7.57,10.1] (10.1,12.6]

4

6

8

10

12

4

6

8

10

12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.29: Faceting: the same data as in
Figure ??, split by the continuous variable
X1450989_at and arranged by facet_wrap.

Axes scales In Figures ??–??, the axes scales are the same for all plots.
Alternatively, we could let them vary by setting the scales argument of the
facet_grid and facet_wrap; this parameters allows you to control whether
to leave the x-axis, the y-axis, or both to be freely variable. Such alternatives
scalings might allows us to see the full detail of each plot and thus make more
minute observations about what is going on in each. The downside is that the
plot dimensions are not comparable across the groupings.

Implicit faceting You can also facet your plots (without explicit calls to
facet_grid and facet_wrap) by specifying the aesthetics. A very sim-
ple version of implicit faceting is using a factor as your x-axis, such as in
Figures ??–??

Faceting is useful to show more dimensions
without overcrowding the graph

Trellis — chart that uses multiple
instances of the same chart

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO

●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

HIGH QUALITY GRAPHICS IN R 81

no EPI PE FGF4−KO

●

●

●
●

●
●

●

●

●
●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●
●

●●●

●

●●
●

●

●

●
●

●

●
●
●

● ●●

●
● ●
●

●
●

●

●

●
● ●

●

● ●
●

●

●
●
●

●
●●

●●

●●
●

●

●

4

6

8

10

12

4

6

8

10

12

4

6

8

10

12

E3.25
E3.5

E4.5

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.28: Faceting: the same data as in
Figure ??, split by the categorical variables
Embryonic.day (rows) and lineage
(columns).

ggplot(mutate(dftx, Tdgf1 = cut(X1450989_at, breaks = 4)),

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_wrap(~ Tdgf1, ncol = 2)

We see in Figure ?? that the number of points in the four panel is different,
this is because cut splits into bins of equal length, not equal number of points.
If we want the latter, then we can use quantile in conjunction with cut.

●
●

●

●

●
●

●

● ●
●
●

●
●

●

●

●
● ●

●

●
●

●

● ●

●
●

●

● ●● ●

●

●
●

●
●

●

●
● ●

●

●

●
●

●●

●

●

●
●

●
●

● ●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●●

●

●●
●
●

●

● ●
●

●

●
●
●

● ●●●●

●●
●
●

●

(2.53,5.05] (5.05,7.57]

(7.57,10.1] (10.1,12.6]

4

6

8

10

12

4

6

8

10

12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.29: Faceting: the same data as in
Figure ??, split by the continuous variable
X1450989_at and arranged by facet_wrap.

Axes scales In Figures ??–??, the axes scales are the same for all plots.
Alternatively, we could let them vary by setting the scales argument of the
facet_grid and facet_wrap; this parameters allows you to control whether
to leave the x-axis, the y-axis, or both to be freely variable. Such alternatives
scalings might allows us to see the full detail of each plot and thus make more
minute observations about what is going on in each. The downside is that the
plot dimensions are not comparable across the groupings.

Implicit faceting You can also facet your plots (without explicit calls to
facet_grid and facet_wrap) by specifying the aesthetics. A very sim-
ple version of implicit faceting is using a factor as your x-axis, such as in
Figures ??–??

Barley Yield (bushels/acre)

SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

20 30 40 50 60

Grand Rapids
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Duluth
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

University Farm
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Morris
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Crookston
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Waseca

1932
1931

library(“lattice”)
example(“barley”)

Data from an agricultural field trial to
study the crop barley.

Barley Yield (bushels/acre)

SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

20 30 40 50 60

Grand Rapids
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Duluth
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

University Farm
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Morris
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Crookston
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Waseca

1932
1931

library(“lattice”)
example(“barley”)

Data from an agricultural field trial to
study the crop barley.

At 6 sites in Minnesota, 10 varieties of
barley were grown in each of two
years.

Barley Yield (bushels/acre)

SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

20 30 40 50 60

Grand Rapids
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Duluth
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

University Farm
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Morris
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Crookston
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Waseca

1932
1931

library(“lattice”)
example(“barley”)

Data from an agricultural field trial to
study the crop barley.

At 6 sites in Minnesota, 10 varieties of
barley were grown in each of two
years.

Data: yield, for all combinations of
site, variety, and year (6 x 10 x 2 =
120 observations)

Barley Yield (bushels/acre)

SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

20 30 40 50 60

Grand Rapids
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Duluth
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

University Farm
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Morris
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Crookston
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Waseca

1932
1931

library(“lattice”)
example(“barley”)

Data from an agricultural field trial to
study the crop barley.

At 6 sites in Minnesota, 10 varieties of
barley were grown in each of two
years.

Data: yield, for all combinations of
site, variety, and year (6 x 10 x 2 =
120 observations)

Barley Yield (bushels/acre)

SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

20 30 40 50 60

Grand Rapids
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Duluth
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

University Farm
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Morris
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Crookston
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Waseca

1932
1931

library(“lattice”)
example(“barley”)

Data from an agricultural field trial to
study the crop barley.

At 6 sites in Minnesota, 10 varieties of
barley were grown in each of two
years.

Data: yield, for all combinations of
site, variety, and year (6 x 10 x 2 =
120 observations)

Note the data for Morris - reanalysis
in the 1990s using Trellis revealed
that the years had been flipped!

Barley Yield (bushels/acre)

SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

20 30 40 50 60

Grand Rapids
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Duluth
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

University Farm
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Morris
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Crookston
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Waseca

1932
1931

library(“lattice”)
example(“barley”)

Data from an agricultural field trial to
study the crop barley.

At 6 sites in Minnesota, 10 varieties of
barley were grown in each of two
years.

Data: yield, for all combinations of
site, variety, and year (6 x 10 x 2 =
120 observations)

Note the data for Morris - reanalysis
in the 1990s using Trellis revealed
that the years had been flipped!

Barley Yield (bushels/acre)

SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

20 30 40 50 60

Grand Rapids
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Duluth
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

University Farm
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Morris
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Crookston
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Waseca

1932
1931

library(“lattice”)
example(“barley”)

How could you quickly check for
potential batch effects?

package
splots

EDA for finding batch effects

Tidying data to use columns as aesthetics

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO

●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

Tidying data to use columns as aesthetics

Data.frame in R can be in:

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO

●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

Tidying data to use columns as aesthetics

Data.frame in R can be in:

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO

●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

wide format

e.g. a expression matrix with each raw containing
a gene expression for all samples

Tidying data to use columns as aesthetics

Data.frame in R can be in:

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO

●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

wide format

e.g. a expression matrix with each raw containing
a gene expression for all samples

long format

e.g. a collapsed expression data
with each row corresponding to a
gene-sample pair

Tidying data to use columns as aesthetics

Data.frame in R can be in:

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO

●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

wide format

e.g. a expression matrix with each raw containing
a gene expression for all samples

long format

e.g. a collapsed expression data
with each row corresponding to a
gene-sample pair

Each row corresponds to a sample and each
column to a feature (or vice versa).

Tidying data to use columns as aesthetics

Data.frame in R can be in:

Feature and sample information
is stored separately for each
measurement in data columns.

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO

●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

wide format

e.g. a expression matrix with each raw containing
a gene expression for all samples

long format

e.g. a collapsed expression data
with each row corresponding to a
gene-sample pair

Each row corresponds to a sample and each
column to a feature (or vice versa).

Tidying data to use columns as aesthetics

Data.frame in R can be in:

Feature and sample information
is stored separately for each
measurement in data columns.

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO

●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

wide format

e.g. a expression matrix with each raw containing
a gene expression for all samples

long format

e.g. a collapsed expression data
with each row corresponding to a
gene-sample pair

Each row corresponds to a sample and each
column to a feature (or vice versa).

To switch wide ↔ long: pivot_longer, pivot_wider

HIGH QUALITY GRAPHICS IN R 79

0

50

100

150

1700 1800 1900 2000
year

nu
m
be
r

050100150
1700 1800 1900 2000

year

nu
m
be
r

Figure 4.26: The sunspot data. In the upper
panel, the plot shape is roughly quadratic, a
frequent default choice. In the lower panel,
a technique called banking was used to
choose the plot shape.

4.8 3–5D data

Sometimes we want to show the relations between more than two variables.
Obvious choices for including additional dimensions are the plot symbol
shapes and colours. The geom_point geometric object offers the following
aesthetics (beyond x and y):

• fill

• colour

• shape

• size

• alpha

They are explored in the manual page of the geom_point function. fill
and colour refer to the fill and outline colour of an object; alpha to its trans-
parency level. Above, in Figures ?? and following, we have used colour or

Yearly sunspot numbers 1849-1924 -
changes in amplitude

Banking to 45 degrees:

Choose aspect ratio so that the
median absolute slope is 1, i.e. at 45
degrees angle.

Sawtooth: Sunspot cycles typically
rise more rapidly than they fall —
steep rise and slow decline.

Choose aspect ratio so that banking = 45%

HIGH QUALITY GRAPHICS IN R 79

0

50

100

150

1700 1800 1900 2000
year

nu
m
be
r

050100150
1700 1800 1900 2000

year

nu
m
be
r

Figure 4.26: The sunspot data. In the upper
panel, the plot shape is roughly quadratic, a
frequent default choice. In the lower panel,
a technique called banking was used to
choose the plot shape.

4.8 3–5D data

Sometimes we want to show the relations between more than two variables.
Obvious choices for including additional dimensions are the plot symbol
shapes and colours. The geom_point geometric object offers the following
aesthetics (beyond x and y):

• fill

• colour

• shape

• size

• alpha

They are explored in the manual page of the geom_point function. fill
and colour refer to the fill and outline colour of an object; alpha to its trans-
parency level. Above, in Figures ?? and following, we have used colour or

Yearly sunspot numbers 1849-1924 -
changes in amplitude

Banking to 45 degrees:

Choose aspect ratio so that the
median absolute slope is 1, i.e. at 45
degrees angle.

Sawtooth: Sunspot cycles typically
rise more rapidly than they fall —
steep rise and slow decline.

Choose aspect ratio so that banking = 45%

HIGH QUALITY GRAPHICS IN R 79

0

50

100

150

1700 1800 1900 2000
year

nu
m
be
r

050100150
1700 1800 1900 2000

year

nu
m
be
r

Figure 4.26: The sunspot data. In the upper
panel, the plot shape is roughly quadratic, a
frequent default choice. In the lower panel,
a technique called banking was used to
choose the plot shape.

4.8 3–5D data

Sometimes we want to show the relations between more than two variables.
Obvious choices for including additional dimensions are the plot symbol
shapes and colours. The geom_point geometric object offers the following
aesthetics (beyond x and y):

• fill

• colour

• shape

• size

• alpha

They are explored in the manual page of the geom_point function. fill
and colour refer to the fill and outline colour of an object; alpha to its trans-
parency level. Above, in Figures ?? and following, we have used colour or

Yearly sunspot numbers 1849-1924 -
changes in amplitude

Banking to 45 degrees:

Choose aspect ratio so that the
median absolute slope is 1, i.e. at 45
degrees angle.

Sawtooth: Sunspot cycles typically
rise more rapidly than they fall —
steep rise and slow decline.

Choose aspect ratio so that banking = 45%

For plots where x- and y-axis
have same units:  
use 1:1 aspect ratio

Heatmaps for visualizing large matrices

Heatmaps for visualizing large matrices

84 MODERN STATISTICS FOR MODERN BIOLOGY

function to interpolate the 11 colour into a smooth-looking palette (Figure ??).

library("pheatmap")

topGenes <- order(rowVars(exprs(x)), decreasing = TRUE)[seq_len(500)]

rowCenter <- function(x) { x - rowMeans(x) }

pheatmap(rowCenter(exprs(x)[topGenes,]),

show_rownames = FALSE, show_colnames = FALSE,

breaks = seq(-5, +5, length = 101),

annotation_col = pData(x)[, c("sampleGroup", "Embryonic.day", "ScanDate")],

annotation_colors = list(

sampleGroup = groupColour,

genotype = c(‘FGF4-KO‘ = "chocolate1", ‘WT‘ = "azure2"),

Embryonic.day = setNames(brewer.pal(9, "Blues")[c(3, 6, 9)], c("E3.25", "E3.5", "E4.5")),

ScanDate = setNames(brewer.pal(nlevels(x$ScanDate), "YlGn"), levels(x$ScanDate))

),

cutree_rows = 4

)

sampleGroup
Embryonic.day
ScanDate

ScanDate
2010−06−30
2010−07−01
2010−07−02
2010−09−16
2011−03−15
2011−03−16
2012−03−16
2012−08−16
2013−03−05

Embryonic.day
E3.25
E3.5
E4.5

sampleGroup
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

−4

−2

0

2

4

Figure 4.33: A heatmap of relative expres-
sion values, i. e., log2 fold change compared
to the average expression of that gene (row)
across all samples (columns). The colour
scale uses a diverging palette, whose neutral
midpoint is at 0.

Let us take a minute to deconstruct the rather massive-looking call
to pheatmap. The options show_rownames and show_colnames control
whether the row and column names are printed at the sides of the matrix. Be-
cause our matrix is large in relation to the available plotting space, the labels
would anyway not be readable, and we suppress them. The annotation_col

Heatmaps for visualizing large matrices

84 MODERN STATISTICS FOR MODERN BIOLOGY

function to interpolate the 11 colour into a smooth-looking palette (Figure ??).

library("pheatmap")

topGenes <- order(rowVars(exprs(x)), decreasing = TRUE)[seq_len(500)]

rowCenter <- function(x) { x - rowMeans(x) }

pheatmap(rowCenter(exprs(x)[topGenes,]),

show_rownames = FALSE, show_colnames = FALSE,

breaks = seq(-5, +5, length = 101),

annotation_col = pData(x)[, c("sampleGroup", "Embryonic.day", "ScanDate")],

annotation_colors = list(

sampleGroup = groupColour,

genotype = c(‘FGF4-KO‘ = "chocolate1", ‘WT‘ = "azure2"),

Embryonic.day = setNames(brewer.pal(9, "Blues")[c(3, 6, 9)], c("E3.25", "E3.5", "E4.5")),

ScanDate = setNames(brewer.pal(nlevels(x$ScanDate), "YlGn"), levels(x$ScanDate))

),

cutree_rows = 4

)

sampleGroup
Embryonic.day
ScanDate

ScanDate
2010−06−30
2010−07−01
2010−07−02
2010−09−16
2011−03−15
2011−03−16
2012−03−16
2012−08−16
2013−03−05

Embryonic.day
E3.25
E3.5
E4.5

sampleGroup
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

−4

−2

0

2

4

Figure 4.33: A heatmap of relative expres-
sion values, i. e., log2 fold change compared
to the average expression of that gene (row)
across all samples (columns). The colour
scale uses a diverging palette, whose neutral
midpoint is at 0.

Let us take a minute to deconstruct the rather massive-looking call
to pheatmap. The options show_rownames and show_colnames control
whether the row and column names are printed at the sides of the matrix. Be-
cause our matrix is large in relation to the available plotting space, the labels
would anyway not be readable, and we suppress them. The annotation_col

pheatmap
• many “reasonable”

defaults
• easy to add column

and row ‘metadata’
at the sides

See also
ComplexHeatmap
package

The order of dendrogram branches is not unique

84 MODERN STATISTICS FOR MODERN BIOLOGY

function to interpolate the 11 colour into a smooth-looking palette (Figure ??).

library("pheatmap")

topGenes <- order(rowVars(exprs(x)), decreasing = TRUE)[seq_len(500)]

rowCenter <- function(x) { x - rowMeans(x) }

pheatmap(rowCenter(exprs(x)[topGenes,]),

show_rownames = FALSE, show_colnames = FALSE,

breaks = seq(-5, +5, length = 101),

annotation_col = pData(x)[, c("sampleGroup", "Embryonic.day", "ScanDate")],

annotation_colors = list(

sampleGroup = groupColour,

genotype = c(‘FGF4-KO‘ = "chocolate1", ‘WT‘ = "azure2"),

Embryonic.day = setNames(brewer.pal(9, "Blues")[c(3, 6, 9)], c("E3.25", "E3.5", "E4.5")),

ScanDate = setNames(brewer.pal(nlevels(x$ScanDate), "YlGn"), levels(x$ScanDate))

),

cutree_rows = 4

)

sampleGroup
Embryonic.day
ScanDate

ScanDate
2010−06−30
2010−07−01
2010−07−02
2010−09−16
2011−03−15
2011−03−16
2012−03−16
2012−08−16
2013−03−05

Embryonic.day
E3.25
E3.5
E4.5

sampleGroup
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

−4

−2

0

2

4

Figure 4.33: A heatmap of relative expres-
sion values, i. e., log2 fold change compared
to the average expression of that gene (row)
across all samples (columns). The colour
scale uses a diverging palette, whose neutral
midpoint is at 0.

Let us take a minute to deconstruct the rather massive-looking call
to pheatmap. The options show_rownames and show_colnames control
whether the row and column names are printed at the sides of the matrix. Be-
cause our matrix is large in relation to the available plotting space, the labels
would anyway not be readable, and we suppress them. The annotation_col

The order of dendrogram branches is not unique

84 MODERN STATISTICS FOR MODERN BIOLOGY

function to interpolate the 11 colour into a smooth-looking palette (Figure ??).

library("pheatmap")

topGenes <- order(rowVars(exprs(x)), decreasing = TRUE)[seq_len(500)]

rowCenter <- function(x) { x - rowMeans(x) }

pheatmap(rowCenter(exprs(x)[topGenes,]),

show_rownames = FALSE, show_colnames = FALSE,

breaks = seq(-5, +5, length = 101),

annotation_col = pData(x)[, c("sampleGroup", "Embryonic.day", "ScanDate")],

annotation_colors = list(

sampleGroup = groupColour,

genotype = c(‘FGF4-KO‘ = "chocolate1", ‘WT‘ = "azure2"),

Embryonic.day = setNames(brewer.pal(9, "Blues")[c(3, 6, 9)], c("E3.25", "E3.5", "E4.5")),

ScanDate = setNames(brewer.pal(nlevels(x$ScanDate), "YlGn"), levels(x$ScanDate))

),

cutree_rows = 4

)

sampleGroup
Embryonic.day
ScanDate

ScanDate
2010−06−30
2010−07−01
2010−07−02
2010−09−16
2011−03−15
2011−03−16
2012−03−16
2012−08−16
2013−03−05

Embryonic.day
E3.25
E3.5
E4.5

sampleGroup
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

−4

−2

0

2

4

Figure 4.33: A heatmap of relative expres-
sion values, i. e., log2 fold change compared
to the average expression of that gene (row)
across all samples (columns). The colour
scale uses a diverging palette, whose neutral
midpoint is at 0.

Let us take a minute to deconstruct the rather massive-looking call
to pheatmap. The options show_rownames and show_colnames control
whether the row and column names are printed at the sides of the matrix. Be-
cause our matrix is large in relation to the available plotting space, the labels
would anyway not be readable, and we suppress them. The annotation_col

Goals for this lecture
1. Discuss the principles of good vs bad data viz

2. Review base R plotting

3. Understand the grammar of graphics concept

4. Introduce, explain and use the ggplot() function

5. Discuss how to plot 1D, 2D, 3-5D data and select the

most appropriate plot type. Use faceting

6. Use visualization for the inspection of large datasets

and discovery of global trends (e.g. batch effects)

7. Implement interactive (3D) visualization

Interactivity
Use shiny or plotly
https://shiny.rstudio.com/gallery/genome-browser.html

Animations (time-dependent plots):
https://gganimate.com

Linked Charts
https://anders-biostat.github.io/linked-charts/

NB: ggvis is senescent

https://shiny.rstudio.com/gallery/genome-browser.html
https://gganimate.com

plotly interactive graphics

plotly interactive graphics

• plotly is a package for visualization and a collaboration
platform for data science

https://plotly-book.cpsievert.me/

plotly interactive graphics

• plotly is a package for visualization and a collaboration
platform for data science

• produces interactive graphics including 3D plots (with
zooming and rotating).

https://plotly-book.cpsievert.me/

plotly interactive graphics

• plotly is a package for visualization and a collaboration
platform for data science

• produces interactive graphics including 3D plots (with
zooming and rotating).

• can translate ‘ggplot2’ graphs to an interactive version.

https://plotly-book.cpsievert.me/

plotly interactive graphics

• plotly is a package for visualization and a collaboration
platform for data science

• produces interactive graphics including 3D plots (with
zooming and rotating).

• can translate ‘ggplot2’ graphs to an interactive version.
• You can open a ‘plotly’ account to upload ‘plotly’ graphs and

view or modify them in a web browser.

https://plotly-book.cpsievert.me/

plotly interactive graphics

• plotly is a package for visualization and a collaboration
platform for data science

• produces interactive graphics including 3D plots (with
zooming and rotating).

• can translate ‘ggplot2’ graphs to an interactive version.
• You can open a ‘plotly’ account to upload ‘plotly’ graphs and

view or modify them in a web browser.

https://plotly-book.cpsievert.me/

plotly interactive graphics

• plotly is a package for visualization and a collaboration
platform for data science

• produces interactive graphics including 3D plots (with
zooming and rotating).

• can translate ‘ggplot2’ graphs to an interactive version.
• You can open a ‘plotly’ account to upload ‘plotly’ graphs and

view or modify them in a web browser.

 More on plotly can be found at https://plotly-book.cpsievert.me/

https://plotly-book.cpsievert.me/

plotly interactive graphics demo

see https://www.huber.embl.de/users/whuber/2021-M5Bioinfo/graphics

https://www.huber.embl.de/users/whuber/2021-M5Bioinfo/graphics

Acknowledgements

Susan Holmes
Laura Marie J Symul
Hadley Wickham
Lan Huong Nguyen

