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1 Introduction

GOAL: The BUS package allows the computation of two types of similarities (correlation [Sokal, 2003] and
mutual information [Cover, 2001]) for two different goals: (i) identification of the similarity among the activity of
molecules sampled across different experiments (we name this option Unsupervised, U), (ii) identification of the
similarity between such molecules and other types of information (clinical, anagraphical, etc, we name this option
supervised, S).

Unsupervised Option. The computation applies to data in tabular form (MxN) where rows represents
different molecules (M), columns represents experiments or samples (N) and the content of the tables’ cells the
abundance of the molecule in the sample. Microarray experiments are the data of choice for this application,
but the method can be applied to any data in the appropriate format (miRNA arrays, RNA-seq data, etc.). The
results are in the form of an MxM adjacency matrix, where each cell represents the association computed among
the corresponding molecules. This matrix has associated also a p-value matrix and a corrected p-value matrix (see
below for details). Based on the cutoff selected, the adjacency matrix can be trimmed and lead to a predicted
network of statistically significant interactions (pred.network). This output can be used as-is to represent a
gene association network ([Margolin, 2004, Basso, 2005]), or can be further elaborated to cluster genes based on
a shared degree of similarity (hence the Unsupervised label). Mutual information (from now on MI) is computed
using the minet package [Meyer, 2008], all the options can be found in the corresponding vignette. Here argument
net.trim decides which function (mrnet/clr/aracne) in MINET package is used to give the similarity based on
mutual information matrix. Correlation is computed using the R built-in cor function.

Supervised Option. For the S option a second dataset is necessary, a TxN table, where T represents the
number of external traits of interest. The result is an association MxT table where each cell indicates the association
between the molecule and the external trait. Mutual information is computed according to the empirical method
proposed in MINET package. It is implemented with a external c function. This matrix has associated also a
p-value matrix and a corrected p-value matrix (see below for details). As this can be used to associate samples to
clinical classes we call this option Supervised (this type of approach was used in [Diehn, 2008]).

Statistical Significance. The package offers the possibility to evaluate the statistical significance of the
computed similarity measures in two steps, a summary of the options is given in Table 1.

Option
p-value

single multiple
ρ MI MI

S Exact beta distribution permutations (3 options)
U permutations

Table 1. Summary of the available options for statistical validation in BUS. ρ indicates correlation.

First, it allows the computation of the "single" p-value, i.e. the p-value relevant for the assessment of the
statistical significance of the similarity of a given gene as if it was the only one tested.

For correlation this relies on the R built-in cor.test and it then computes the exact p-value.
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For MI it is obtained from permutations and this method estimates the extreme p-values (close to 0) by fitting
a beta distribution, whose analytical expression is obtained by the estimate of 2 shape parameters (α̂ and β̂) using
the method of the moments.

Second, for the p-value of MI, correction for multiple hypothesis testing is computed based on permutations. 3
types of corrections are offered:

• S analysis option method.permut = 1 correction for multiple traits tested

• S analysis option method.permut = 2 correction for multiple genes tested

• S analysis option method.permut = 3 correction for both traits and genes

Missing Data Treatment. Data are pre-processed to cope with missing information (both in the MxN and
in the TxN table) using (smooth) bootstrapping [Silverman, 1987].

The main function BUS has arguments for:

• the type of analysis (supervised/unsupervised)

• the distance metric (correlation/MI)

• the correction types for statistical significance on multiple hypothesis testing based on permutations (genes,
traits or both)

Expected computation times. In the unsupervised case, the anticipated time for a 50*12 matrix (gene
expression data) is 30 seconds when running on an ordinary personal computer (with 1G memory). While in the
supervised case, with 50*12 gene expression data and trait data involved, it is 2 minute when correction of both
genes and traits is considered.

The functions’ dependencies scheme of the BUS package is illustrated below.

Figure 1. functions scheme

Functions Description
BUS: A wrapper function to compute (i) the similarity matrix (using correlation/MI as metric) and the single

p-value matrix (each element is the p-value under the null hypothesis that the related row gene and column gene
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have no interaction), corrected p-values matrix (different levels of dependency are considered) and the predicted
network matrix (predicted gene network, this output is effective for option U)

gene.similarity: Function for the computation of the adjacency matrix in the Unsupervised option (using
correlation/MI as metric)

gene.trait.similarity: Function for the computation of the similarity matrix in the Supervised option (using
correlation/MI as metric)

gene.pvalue: Function for the computation of the p-value matrix for the Unsupervised option. Single p-value
(each element is the p-value under the null hypothesis that the related row gene and column gene have no inter-
action) is computed thanks to: (i) for MI the distribution identified by the P permutation values identified for
each gene, with extreme p-values computed fitting a beta distribution; for correlation using the exact distribution
provided by the built-in R cor function (single.perm.p.value). Corrected p-value is computed thanks to the distri-
bution identified by the p permutation values across all genes (multi.perm.p.value). When correlation is used as
matric, only exact p-value is output.

gene.trait.pvalue: Function for the computation of the p-value matrix for the Supervised option. Single
p-value (each element is the p-value under the null hypothesis that the related row gene and column trait have no
interaction) is computed thanks to: (i) for MI the distribution identified by the P permutation values identified for
each gene, with extreme p-values computed fitting a beta distribution; for correlation using the exact distribution
provided by the built-in R cor function (single.perm.p.value). Corrected p-value is computed thanks to the
distribution identified by the P permutation values across all genes (multi.perm.p.value); (ii) the distribution
identified by the P permutation values across all traits; (iii) the distribution identified by the P permutation values
across all genes and traits.

pred.network: Function to predict the network from the selected corrected p-value matrix, only for the Unsu-
pervised option.

2 BUS Usage

> library(BUS)
> library(minet)
> data(copasi)
> mat=as.matrix(copasi)[1:5,]
> rownames(mat)<-paste("G",1:nrow(mat), sep="")
> BUS(EXP=mat,measure="MI",n.replica=400,net.trim="aracne",thresh=0.05,nflag=1)

$similarity
G1 G2 G3 G4 G5

G1 1.0000000 0.0000000 0.0000000 1.0000000 0.8972577
G2 0.0000000 1.0000000 0.0000000 0.7253354 0.0000000
G3 0.0000000 0.0000000 1.0000000 0.0000000 0.9093271
G4 1.0000000 0.7253354 0.0000000 1.0000000 0.0000000
G5 0.8972577 0.0000000 0.9093271 0.0000000 1.0000000

$single.perm.p.value
G1 G2 G3 G4 G5

G1 0.0000 0.4750 0.4725 0.0000 0.1150
G2 0.4750 0.0000 0.4600 0.1400 0.4225
G3 0.4725 0.4600 0.0000 0.5125 0.1100
G4 0.0000 0.1400 0.5125 0.0000 0.4625
G5 0.1150 0.4225 0.1100 0.4625 0.0000

$multi.perm.p.value
G1 G2 G3 G4 G5

G1 0.00000000 0.39136490 0.39853301 0.00000000 0.01597222
G2 0.39136490 0.00000000 0.40020899 0.05884389 0.38227147
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G3 0.39853301 0.40020899 0.00000000 0.41319444 0.01806183
G4 0.00000000 0.05884389 0.41319444 0.00000000 0.39523645
G5 0.01597222 0.38227147 0.01806183 0.39523645 0.00000000

$net.pred.permut
G1 G2 G3 G4 G5

G1 1.0000000 0 0.0000000 1 0.8972577
G2 0.0000000 1 0.0000000 0 0.0000000
G3 0.0000000 0 1.0000000 0 0.9093271
G4 1.0000000 0 0.0000000 1 0.0000000
G5 0.8972577 0 0.9093271 0 1.0000000

The arguments to the BUS function here are

• EXP, a matrix for gene expression data.

• measure, metric used to calculate similarity. There are two choices, MI and corr. We use MI here, applying
the MINET package to output the similarity matrix with option of aracne.

• method.permut, a flag to indicate which method is used to correct permutation p-values. Here a default
value (2) is used.

• n.replica, number of permutations: default value is 400, for optimal precision in p-value computation.

• net.trim, method chosen to trim the network. Here aracne method is applied, where the least significant
edge in each triplet is removed.

• threshold, threshold, according to which significant association between genes are selected to construct
the predicted network. This option is acutually used in function pred.network for predicted network from
p-value matrix.

• nflag, a flag for the type of analysis. If Supervised nflag=2, if Unsupervised nflag=1. Here an Unsupervised
option is considered.

The copasi dataset is taken from Copasi2 (Complex Pathway Simulator), a software for simulation and analysis
of biochemical networks. The system generates random artificial gene networks according to well-defined topo-
logical and kinetic properties. These are used to run in silico experiments simulating real laboratory micro-array
experiments. Noise with controlled properties is added to the simulation results several times emulating mea-
surement replicates, before expression ratios are calculated. This series consists of 150 artificial gene networks.
Each network consists of 100 genes with a total of 200 gene interactions (on average each gene has 2 modulators).
All networks are composed of genes with similar kinetics, the only difference between networks is how the gene
interactions are organized (i.e. which genes induce and repress which other genes). The networks belong to three
major groups according to their topologies: RND stands for randomized network, SF for scale-free(many edges
among few nodes) and SW for small world (edges exist between adjacent nodes). The data given in the package
is an RND data. Actually, only first of five rows in the gene expression data is used to calculate to save the space
here.

Explain the results:

• similarity: the matrix for mutual information.

• single.perm.p.value: the single p-value matrix, i.e. the p-value matrix obtained by the simple purmutation
method. We can see it is a 5*5 matrix here as we only use data for 5 genes.

• multi.perm.p.value: the corrected permutation p-value matrix, i.e. the p-value matrix obtained via cor-
rected permutation method.

• net.pred.permut: the network predicted based on the corrected permutation p-value matrix. This network
is based on multi-hypothesis-corrected p-values.
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This is an Unsupervised case. We could see that a lower values in single.perm.p.value/multi.perm.p.value
or a higher values in net.pred.permut indicate a strong link between the row and column genes. The value 0 in
the p-value matrix or 1 in network matrix respectively infers a strong link.

> data(tumors.mRNA)
> exp<- as.matrix(tumors.mRNA)[11:15,]
> rownames(exp)<-rownames(tumors.mRNA)[11:15]
> data(tumors.miRNA)
> trait<- as.matrix(tumors.miRNA)[11:15,]
> rownames(trait)<-rownames(tumors.miRNA)[11:15]
> BUS(EXP=exp,trait=trait,measure="MI",nflag=2)

$similarity
hsa-mir-132 hsa-mir-133a hsa-mir-135a

200017_at 0.0000000 0.0000000 0.2334554
200018_at 0.0000000 0.2334554 0.2334554
200022_at 1.0000000 0.0000000 0.2334554
200023_s_at 0.2334554 0.0000000 0.0000000
200024_at 1.0000000 0.2334554 0.2334554

hsa-mir-135b hsa-mir-139
200017_at 0.05920619 0.2334554
200018_at 0.05920619 0.0000000
200022_at 0.05920619 0.0000000
200023_s_at 0.05920619 0.0000000
200024_at 0.55920619 0.0000000

$single.perm.p.value
hsa-mir-132 hsa-mir-133a hsa-mir-135a

200017_at 0.5625 0.5425 0.1725
200018_at 0.5850 0.3300 0.1775
200022_at 0.0000 0.5525 0.3100
200023_s_at 0.1875 0.5925 0.5525
200024_at 0.0000 0.1850 0.3375

hsa-mir-135b hsa-mir-139
200017_at 0.3775 0.1700
200018_at 0.3925 0.5550
200022_at 0.4100 0.5100
200023_s_at 0.3775 0.4900
200024_at 0.0650 0.5425

$multi.perm.p.value
hsa-mir-132 hsa-mir-133a hsa-mir-135a

200017_at 0.559 0.5620 0.1755
200018_at 0.559 0.3400 0.1755
200022_at 0.000 0.5620 0.3425
200023_s_at 0.179 0.5620 0.5560
200024_at 0.000 0.1765 0.3425

hsa-mir-135b hsa-mir-139
200017_at 0.3880 0.1675
200018_at 0.3880 0.5295
200022_at 0.3880 0.5295
200023_s_at 0.3880 0.5295
200024_at 0.0605 0.5295

Here is a Supervised case, we use the tumor dataset from [Liu, 2007], the mRNA data as gene expression data
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and miRNA data as trait data. Gene expression data were obtained by microarray from human brain tumors,
while miRNA data were obtained by RT-PCR. 12 brain tumors at different levels are analyzed for both mRNA
and miRNA levels to study the correlation of any mRNA-miRNA pairs. Outputs are similar like that in the
unsupervised case except the predicted network.
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