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1 Introduction

Figure 1: A comparison of estimated evolu-
tionary rates for different classes of nucleotide
sites based on the divergence of β-globin gene
(HBB) sequences between humans and other
primates. The β-globin pseudogene (HBBP1)
is included as a reference of neutral evolution.
Although there is considerable variation across
organisms on this example from a single gene,
third codon positions tend to evolve at high
rates comparable to the neutral reference and
much faster than the other codon positions.

Population genetics provides the theoretical foundation for the study
of evolutionary processes. At the core of modern population genetics
is the neutral mutation hypothesis, which challenged prior notions
that most molecular variation was the result of classical Darwinian
selection [1]. Neutral theory now provides a null model for many
evolutionary investigations. By the late 20th century, there was suf-
ficient data to make it clear that evolution was a balance between the
processes of drift and selection that depended on the effective popu-
lation size. This balance manifests in stark patterns of rate variation
across different subsets of nucleotide sites in the genome (Fig. 1).

There are many different population genetics methods avail-
able, and it is often unclear which to use for a given purpose or
dataset. This vignette showcases a select subset of methods that
extract particularly useful information from sequence alignments.
The purpose of this vignette is to illustrate how to apply and in-
terpret these powerful population genetics functions. All of the DE-
CIPHER functions for population genetics are named starting with
“Infer” followed by the objective of their inference, because each
function uses the first principles of population genetics to infer esti-
mates of fundamental variables about a population.

Many assumptions underly population genetics functions,
and those assumptions are thoroughly advertised on the help page for
each function used here. An assumption made by all methods is that
some sites evolve neutrally, including the third position of codons.
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This assumption is almost certainly violated in some cases [2]. How-
ever, using pseudogenes as a likely-neutral reference [3], it is apparent the third position in codons is generally under
far less selection pressure than the other two codon positions (Fig. 1). Therefore, we will treat the third codon position
as neutral throughout the examples below. This approximation has been exploited by population genetics approaches
for many decades.

Figure 2: Population genetics functions are intended to be ap-
plied to sequences sampled from a population. In this regime, nu-
cleotide differences have accumulated but the number of changes per
site is far less than saturation (red). The InferDemography and
InferRecombination functions require little nucleotide diversity
within the population, but the InferSelection function requires
sufficient variation for there to also possibly be changes to the corre-
sponding protein sequence.

As the name implies, population ge-
netics is applied to samples from popu-
lations. It is crucial to apply the func-
tions in their applicable regime (Fig. 2).
All of DECIPHER’s population genetics
functions are designed to be used on sam-
ples of sequences taken from within a
species, not between different species. The
InferDemography function infers pop-
ulation size changes from a large amount
of sequence data with relatively few poly-
morphisms. The InferRecombination
function needs slightly more polymor-
phisms, such that some are located nearby
each other on the sequence. In contrast,
the InferSelection function can handle
amino acid changes, which requires an even
greater degree of polymorphism.

All three population genetics func-
tions in DECIPHER take multiple sequence
alignments as input and return a vector of
numbers. They differ in the patterns of poly-
morphism used for inference. The intended
use of each function is summarized in the table below. Although these functions are new implementations, please cite
the relevant method’s original publication when reporting results. A typical use case would be to run the function(s)
on a set of different gene alignments and then aggregate or compare the results. Statistical significance for a single
input can be obtained by bootstrapping the input sequences. For simplicity, this vignette provides an example analysis
of a single alignment, which could be modified to loop through multiple different alignments.

Function Input(s) Output(s) Reference

InferDemography DNA alignments of 2+ sequences Recombination parameters [4]
InferRecombination DNA alignment or site frequencies Timeline of population size changes [5]

InferSelection DNA alignment of coding sequences dN/dS per codon or region [6]

2 Getting Started
To get started we need to load the DECIPHER package, which automatically loads a few other required packages.

> library(DECIPHER)

Help for a function can be accessed through:

> ? InferDemography

Once DECIPHER is installed, the code in this tutorial can be obtained via:
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> browseVignettes("DECIPHER")

For simplicity, all of the examples below will use the same sequences. Protein coding sequences are required
for inferring selection, but demographic and recombination inference can use any aligned nucleotide sequences. In
this vignette, we will load a set of 50S ribosomal protein L2 gene sequences.

> # specify the path to your file of sequences:
> fas1 <- "<<path to FASTA file>>"
> # OR use the example protein coding sequences:
> fas <- system.file("extdata",

"50S_ribosomal_protein_L2.fas",
package="DECIPHER")

> # read the sequences into memory
> dna <- readDNAStringSet(fas)
> dna

DNAStringSet object of length 317:
width seq names

[1] 819 ATGGCTTTAAAAAATTTTAATC...ATTTATTGTAAAAAAAAGAAAA Rickettsia prowaz...
[2] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[3] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[4] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[5] 819 ATGGCTATCGTTAAATGTAAGC...CATCGTACGTCGTCGTGGTAAA Pasteurella multo...
... ... ...

[313] 819 ATGGCAATTGTTAAATGTAAAC...TATCGTACGTCGCCGTACTAAA Pectobacterium at...
[314] 822 ATGCCTATTCAAAAATGCAAAC...TATTCGCGATCGTCGCGTCAAG Acinetobacter sp....
[315] 864 ATGGGCATTCGCGTTTACCGAC...GGGTCGCGGTGGTCGTCAGTCT Thermosynechococc...
[316] 831 ATGGCACTGAAGACATTCAATC...AAGCCGCCACAAGCGGAAGAAG Bradyrhizobium ja...
[317] 840 ATGGGCATTCGCAAATATCGAC...CAAGACGGCTTCCGGGCGAGGT Gloeobacter viola...

It is important to carefully consider what population to analyze. All of the functions described here assume the
input sequences were randomly sampled from an unstructured population of closely related individuals that may (or
may not) be exchanging genetic material. For this vignette, we will limit the analysis to only sequences sampled from
the species Helicobacter pylori. This can be accomplished by selecting a subset of sequences by their names.

> dna <- dna[startsWith(names(dna), "Helicobacter pylori")]
> dna

DNAStringSet object of length 75:
width seq names

[1] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACACAAA Helicobacter pylo...
[2] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[3] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[4] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[5] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
... ... ...
[71] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[72] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[73] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[74] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[75] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACACAAA Helicobacter pylo...

Next, it is necessary to align the input sequences. Since they are protein coding in this example, it is best to
use the AlignTranslation function to preserve the reading frame by aligning the sequences via their amino acid
translations. If the sequences were noncoding, AlignSeqs could be used instead.

3



> dna <- AlignTranslation(dna, verbose=FALSE)
> dna # all sequences have the same width

DNAStringSet object of length 75:
width seq names

[1] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACACAAA Helicobacter pylo...
[2] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[3] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[4] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[5] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
... ... ...
[71] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[72] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[73] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[74] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACATAAA Helicobacter pylo...
[75] 828 ATGGCGATTAAAACTTATAAGCC...CATTTCCAGAAAGAAACACAAA Helicobacter pylo...

All three population genetics functions allow the specification of a readingFrame for protein coding inputs,
which is denoted by the first position of the first codon in the alignment (i.e., 1, 2, or 3). Analyzing individual codon
positions requires that the reading frame be maintained throughout the alignment. Therefore, any frameshifts must be
corrected beforehand by using CorrectFrameshifts on the (unaligned) coding sequences.

3 Inferring Demography
The InferDemography function fits a population genetics model [4] to the distribution of minor allele frequencies
per alignment column, also known as the folded site frequency spectrum. This distribution will largely be affected by
past changes in population size if we can assume the sites are evolving neutrally. Therefore, we will only use the third
position of codons in our analysis by specifying that the readingFrame starts from the first position in the alignment
(i.e., the “A” in the “ATG” start codon).

The function returns the estimated effective population sizes over different time intervals since the last common
ancestor. This analysis requires the mutation rate and ploidy to calibrate the quantitative output, although these will
have no effect on the qualitative picture of relative population size changes. The InferDemography function can
also produce a plot showing the inferred step function of effective population sizes (Fig. 3).

The output shows the most likely step function only contained a single change in population size, resulting
in two intervals. We see that the effective population size increased approximately ten million generations in the
past, which would result in a higher abundance of singleton alleles than for a constant size population evolving under
neutrality. The numeric output gives the three times (in units of generations) specifying the bounds of each of the two
effective population size intervals. It then provides the observed and estimated folded site frequency spectra.

InferDemography would typically be used on an alignment with far more sites to increase accuracy. For
this reason, it is possible to apply the function to many different gene alignments from the same set of organisms, then
add the observed site frequencies together for use as input to the function. It is important to always confirm that the
observed and spectra closely match, implying a satisfactory fit (as shown here).
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> x <- InferDemography(dna, readingFrame=1, mu=1e-9, ploidy=1, show=TRUE)

Intervals = 1: LnL = -64.464
Intervals = 2: LnL = -57.908
Intervals = 3: LnL = -57.669

Time difference of 1.35 secs

> head(x, 20)

Intervals LogLikelihood Time 75 Time 13 Time 2
2.000000e+00 -5.790763e+01 2.425122e+04 9.421600e+06 5.384285e+07

Ne 75 Ne 13 Observed 0 Observed 1 Observed 2
6.729714e+07 2.422977e+07 1.620000e+02 3.400000e+01 1.500000e+01

Observed 3 Observed 4 Observed 5 Observed 6 Observed 7
9.000000e+00 5.000000e+00 6.000000e+00 3.000000e+00 2.000000e+00

Observed 8 Observed 9 Observed 10 Observed 11 Observed 12
2.000000e+00 3.000000e+00 2.000000e+00 4.000000e+00 1.000000e+00
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Figure 3: Fitted distribution of allele frequencies (top) and inferred past demographic changes (bottom).
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4 Inferring Recombination
The InferRecombination fits a population genetics model to a “correlation profile” [5] derived from the decaying
linkage between sites that are further apart. This method can be applied to pairs of aligned genomes (e.g., from
AlignSynteny) or a multiple sequence alignment. As in the previous example above, we will assume neutrality by
specifying readingFrame and only assessing the third position of codons.

The function fits a three parameter model and then uses these to infer multiple other derived parameters de-
scribing recombination. Since we specified a readingFrame, the analysis is applied to all three codon positions by
default. The third codon position displays a curved (“L” shaped) correlation profile that is characteristic of recombi-
nation between the sampled genes and an external genetic pool (Fig. 4). The other two codon positions display much
lower substitution rates and can be disregarded since we cannot assume neutrality.

The function’s outputs are described on its help page. Possibly the most interesting parameter is the ratio of
recombination to mutation, which was estimated here as approximately 2 using the third codon position. The fitted
data shows a fair amount of noise, implying we could obtain better estimates by sampling more sequences from this
population.
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> y <- InferRecombination(dna, readingFrame=1, showPlot=TRUE)

================================================================================

Time difference of 2.14 secs

> head(y, 10)

Position 1 Position 2 Position 3
fragment 6.324291e+04 1.000000e+03 2.621440e+05
theta_sample 2.031163e-23 1.000000e-05 1.825257e-04
phi_sample 1.522300e-05 5.000000e-05 2.636000e-04
theta_pool 1.154173e-02 -2.998800e-04 7.545867e-02
phi_pool 8.650204e+15 -1.499400e-03 1.089759e-01
ratio 7.494722e+17 5.000000e+00 1.444180e+00
coverage 3.909240e-01 3.225765e-02 9.787488e-01
d_pool 1.136680e-02 -3.000000e-04 6.856068e-02
d_clonal 2.031163e-23 9.999867e-06 1.824813e-04
d_sample 4.443557e-03 0.000000e+00 6.710756e-02
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Figure 4: Fitted correlation profile at each codon position.
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5 Inferring Selection
The InferSelection function estimates ω (also known as the Ka/Ks ratio or dN/dS ratio) by fitting a population
genetics model [6]. Values of ω above 1 provide evidence of positive (Darwinian) selection, whereas ω values below
1 are indicative of negative (purifying) selection. This method can be applied to multiple sequence alignments of
many sequences sampled from the same population and, unlike the other two methods, requires specification of a
readingFrame.

The function provides maximum likelihood estimates of the transition/transversion ratio (κ), expected substitu-
tion rate (θ), and ω in non-overlapping regions across the alignment. The default behavior is to only calculate a single
ω value for the whole alignment, but this will rarely be greater than 1 as negative selection generally overwhelms
any signal of positive selection. With sufficient data, it is possible to specify a windowSize to estimate ω for adjacent
groups of codons. The question is how much data is sufficient for inferring selection?
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Figure 5: Statistical power of InferSelection for
detecting different degrees of selection based on the total
number of codons per window (i.e., number of codon sites
times the number of sequences). Detecting positive selec-
tion (red) requires more codons than detecting negative se-
lection (blue). Each point represents the average result of
1000 codon simulations under a coalescent process.

Simulations of codon evolution under the coales-
cent process with different values of ω provide a means
of answering this question. Figure 5 shows the statisti-
cal power of detecting selection (ω ̸= 1) for increasingly
larger numbers of codons per window at a significance
level of 0.05. It is apparent that detecting negative se-
lection (ω < 1) takes fewer codons than detecting posi-
tive selection (ω > 1), and more extreme values of ω im-
prove detection power. Detecting positive selection re-
quires about 200 or more sampled codons per window.
Therefore, for the 75 example sequences used here, it
would make sense to specify a windowSize of at least 3
(i.e., ⌈200/75⌉), as shown in the example below (Fig. 6).

Changing the windowSize to 1 would cause
InferSelection to estimate ω for every codon site
in the alignment. Statistically significant sites (or re-
gions) with values of ω significantly above 1 are pos-
sibly of biological interest, as these represent where the
protein is evolving under positive selection. It is particu-
larly informative to apply this analysis to many different
genes from the same population and rank the genes by
the fraction (or number) of significantly positively se-
lected codons.
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> z <- InferSelection(dna, windowSize=3, showPlot=TRUE)

LnL = -1734.064

Time difference of 69.19 secs

> head(z, 5)

LogLikelihood theta kappa omega 1-3 omega 4-6
-1.734064e+03 1.265949e-01 1.041657e+01 2.478752e-03 6.737947e-03

> # fraction of windows under significant positive selection (> 2)
> mean(z[startsWith(names(z), "omega")] > 2 &

z[startsWith(names(z), "pvalue")] < 0.05)

[1] 0

> # fraction of windows under significant negative selection (< 1/2)
> mean(z[startsWith(names(z), "omega")] < 1/2 &

z[startsWith(names(z), "pvalue")] < 0.05)

[1] 0.7282609
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Figure 6: Estimates of ω across the alignment.
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6 Session Information
All of the output in this vignette was produced under the following conditions:

• R version 4.5.0 Patched (2025-04-21 r88169), x86_64-apple-darwin20

• Running under: macOS Monterey 12.7.6

• Matrix products: default

• BLAS:
/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRblas.0.dylib

• LAPACK:
/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRlapack.dylib
; LAPACK version3.12.1

• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

• Other packages: BiocGenerics 0.55.0, Biostrings 2.77.0, DECIPHER 3.5.0, GenomeInfoDb 1.45.0,
IRanges 2.43.0, S4Vectors 0.47.0, XVector 0.49.0, generics 0.1.3

• Loaded via a namespace (and not attached): DBI 1.2.3, GenomeInfoDbData 1.2.14, KernSmooth 2.23-26,
R6 2.6.1, UCSC.utils 1.5.0, compiler 4.5.0, crayon 1.5.3, httr 1.4.7, jsonlite 2.0.0, tools 4.5.0
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