NOISeq: Differential Expression in RNA-seq

Sonia Tarazona (starazona@cipf .es)
Pedro Furi6-Tari (pfurio@cipf.es)
Maria José Nueda (mj.nueda@ua.es)
Alberto Ferrer (aferrer@eio.upv.es)
Ana Conesa (aconesa@cipf.es)

11 February 2016
(Version 2.14.1)

Contents
1 Introduction
2 Input data
2.1 Expression data
2.2 Factors. e
2.3 Additional biological annotation L
2.4 Converting data into a NOISeq object
3 Quality control of count data
3.1 Generating data for exploratory plots
3.2 Biotype detection
3.2.1 Biodetection plot L
3.2.2 Count distribution per biotype
3.3 Sequencing depth & Expression Quantification L.
3.3.1 Saturation plot
3.3.2 Count distribution per sample
3.3.3 Sensitivity plot
3.4 Sequencing bias detection
3.4.1 Length bias oL
3.4.2 GCecontent bias e e e
3.4.3 RNA composition L
3.5 PCA exploration
3.6 Quality Control report L L
4 Normalization, Low-count filtering & Batch effect correction
4.1 Normalization« . L e e
4.2 Low-count filtering e
4.3 Batch effect correction L e e e e
5 Differential expression
5.1 NOISeq . . . o o o
5.1.1 NOISeq-real: using available replicates
5.1.2 NOISeqg-sim: no replicates available 0 L.
5.1.3 NOISeqBIO e
5.2 Results. e
5.2.1 NOISeq output object
5.2.2 How to select the differentially expressed features
5.2.3 Plots on differential expression results Lo oL
6 Setup

N

=W w NN

—_
[e=RENeRN0IES BEN BE e e NG, B

— = s e
=W N NN O

14
15
16
16

18
18
19
20
20
21
21
22
22

25

1 Introduction

This document will guide you through to the use of the R Bioconductor package NOISeq, for analyzing count data
coming from next generation sequencing technologies. NOISeq package consists of three modules: (1) Quality
control of count data; (2) Normalization and low-count filtering; and (3) Differential expression analysis.

First, we describe the input data format. Next, we illustrate the utilities to explore the quality of the count
data: saturation, biases, contamination, etc. and show the normalization, filtering and batch correction methods
included in the package. Finally, we explain how to compute differential expression between two experimental
conditions. The differential expression method NOISeq and some of the plots included in the package were
displayed in [1, 2].The new version of NOISeq for biological replicates (NOISeqBIO) is also implemented in the
package.

The NOISeq and NOISeqBIO methods are data-adaptive and nonparametric. Therefore, no distributional
assumptions need to be done for the data and differential expression analysis may be carried on for both raw
counts or previously normalized or transformed datasets.

We will use the “reduced” Marioni’s dataset [3] as an example throughout this document. In Marioni’s
experiment, human kidney and liver RNA-seq samples were sequenced. There are 5 technical replicates per
tissue, and samples were sequenced in two different runs. We selected chromosomes I to IV from the original
data and removed genes with 0 counts in all samples and with no length information available. Note that this
reduced dataset is only used to decrease the computing time while testing the examples. We strongly recommend
to use the whole set of features (e.g. the whole genome) in real analysis.

The example dataset can be obtained by typing:

> library(NOISeq)
> data(Marioni)

2 Input data

NOISeq requires two pieces of information to work that must be provided to the readData function: the expression
data (data) and the factors defining the experimental groups to be studied or compared (factors). However,
in order to perform the quality control of the data or normalize them, other additional annotations need to be
provided such as the feature length, the GC content, the biological classification of the features (e.g. Ensembl
biotypes), or the chromosome position of each feature.

2.1 Expression data

The expression data must be provided in a matrix or a data.frame R object, having as many rows as the number
of features to be studied and as many columns as the number of samples in the experiment. The following
example shows part of the count data for Marioni’s dataset:

> head (mycounts)

R1L1Kidney R1L2Liver R1L3Kidney R1L4Liver R1L6Liver R1L7Kidney R1L8Liver

ENSG00000177757 2 1 0 0 1 2 0

ENSG00000187634 49 27 43 34 23 41 35

ENSG00000188976 73 34 7 56 45 68 55

ENSG00000187961 15 8 15 13 11 13 12

ENSG00000187583 1 0 1 1 0 3

ENSG00000187642 4 0 5 0 2 12 1
R2L2Kidney R2L3Liver R2L6Kidney

ENSGO0000177757 1 1 3

ENSG00000187634 42 25 47

ENSG00000188976 70 42 82

ENSG00000187961 12 20 15

ENSG00000187583 0 2 3

ENSG00000187642 9 4 9

The expression data can be both read counts or normalized expression data such as RPKM values, and also
any other normalized expression values.

2.2 Factors

Factors are the variables indicating the experimental group for each sample. They must be given to the readData
function in a data frame object. This data frame must have as many rows as samples (columns in data object)
and as many columns or factors as different sample annotations the user wants to use. For instance, in Marioni’s
data, we have the factor “Tissue”, but we can also define another factors (“Run” or “TissueRun”). The levels of the
factor “Tissue” are “Kidney” and “Liver”. The factor “Run” has two levels: “R1” and “R2”. The factor “TissueRun”
combines the sequencing run with the tissue and hence has four levels: “Kidney 17, “Liver 17, “Kidney 2" and
“Liver 2"

Be careful here, the order of the elements of the factor must coincide with the order of the samples (columns)
in the expression data file provided.

> myfactors = data.frame(Tissue = c(”Kidney", "Liver", "Kidney", "Liver",

+ "Liver", "Kidney", "Liver", "Kidney", "Liver", "Kidney"), TissueRun = c("Kidney_1",
+ "Liver_1", "Kidney_1", "Liver_1", "Liver_1", "Kidney_1", "Liver_1",

+ "Kidney_2", "Liver_2", "Kidney_2"), Run = c(rep("R1", 7), rep("R2",

+ 3)))

> myfactors

Tissue TissueRun Run
Kidney Kidney_1 R1
Liver Liver_1 R1
Kidney Kidney_1 R1
Liver Liver_1 R1
Liver Liver_1 R1
Kidney Kidney_1 R1
Liver Liver_1 R1
Kidney Kidney_2 R2
Liver Liver_2 R2
10 Kidney Kidney_2 R2

© 00 NOoO O WN -

2.3 Additional biological annotation

Some of the exploratory plots in NOISeq package require additional biological information such as feature length,
GC content, biological classification of features, or chromosome position. You need to provide at least part of
this information if you want to either generate the corresponding plots or apply a normalization method that
corrects by length.

The following code show how the R objects containing such information should look like:

> head(mylength)

ENSG00000177757 ENSGO0000187634 ENSG00000188976 ENSG00000187961 ENSGO0000187583
2464 4985 3870 4964 8507
ENSG00000187642
6890

> head (mygc)

ENSG00000177757 ENSGO0000187634 ENSG00000188976 ENSG00000187961 ENSGO0000187583
48.6 66.0 59.5 67.9 62.6
ENSG00000187642
67.7

> head(mybiotypes)

ENSG00000177757 ENSGO0000187634 ENSG00000188976 ENSG00000187961 ENSG00000187583
"lincRNA" "protein_coding" "protein_coding" "protein_coding" "protein_coding"

ENSG00000187642

"protein_coding"

> head(mychroms)

Chr GeneStart GeneEnd
ENSG0O0000177757 1 742614 745077

ENSG00000187634 1 850393 869824
ENSG0O0000188976 1 869459 884494
ENSG00000187961 1 885830 890958
ENSG00000187583 1 891740 900339
ENSG00000187642 1 900447 907336

Please note, that these objects might contain a different number of features and in different order than the
expression data. However, it is important to specify the names or IDs of the features in each case so the package
can properly match all this information. The length, GC content or biological groups (e.g. biotypes), could be
vectors, matrices or data.frames. If they are vectors, the names of the vector must be the feature names or IDs.
If they are matrices or data.frame objects, the feature names or IDs must be in the row names of the object. The
same applies for chromosome position, which is also a matrix or data.frame.

Ensembl Biomart data base provides these annotations for a wide range of species: biotypes (the biological
classification of the features), GC content, or chromosome position. The latter can be used to estimate the length
of the feature. However, it is more accurate computing the length from the GTF or GFF annotation file so the
introns are not considered.

2.4 Converting data into a NOISeq object

Once we have created in R the count data matrix, the data frame for the factors and the biological annotation
objects (if needed), we have to pack all this information into a NOISeq object by using the readData function.
An example on how it works is shown below:

> mydata <- readData(data = mycounts, length = mylength, gc = mygc, biotype = mybiotypes,
+ chromosome = mychroms, factors = myfactors)
> mydata

ExpressionSet (storageMode: lockedEnvironment)
assayData: 5088 features, 10 samples
element names: exprs
protocolData: none
phenoData
sampleNames: R1L1Kidney R1L2Liver ... R2L6Kidney (10 total)
varLabels: Tissue TissueRun Run
varMetadata: labelDescription

featureData
featureNames: ENSGO0000177757 ENSGO0000187634 ... ENSG00000201145 (5088 total)
fvarLabels: Length GC ... GeneEnd (6 total)

fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation:

The readData function returns an object of Biobase’s eSet class. To see which information is included in this
object, type for instance:

> str(mydata)

> head(assayData(mydata) $exprs)
> head(pData(mydata))

> head(featureData(mydata)@data)

Note that the features to be used by all the methods in the package will be those in the data expression
object. If any of this features has not been included in the additional biological annotation (when provided), the
corresponding value will be NA.

It is possible to add information to an existing object. For instance, noiseq function accepts objects generated
while using other packages such as DESeq package. In that case, annotations may not be included in the object.
The addData function allows the user to add annotation data to the object. For instance, if you generated the
data object like this:

> mydata <- readData(data = mycounts, chromosome = mychroms, factors = myfactors)

And now you want to include the length and the biotypes, you have to use the addData function:
> mydata <- addData(mydata, length = mylength, biotype = mybiotypes, gc = mygc)

IMPORTANT: Some packages such as ShortRead also use the readData function but with different input ob-
ject and parameters. Therefore, some incompatibilities may occur that cause errors. To avoid this problem when
loading simultaneously packages with functions with the same name but different use, the following command
can be used: NOISeq::readData instead of simply readData.

3 Quality control of count data

Data processing and sequencing experiment design in RNA-seq are not straightforward. From the biological
samples to the expression quantification, there are many steps in which errors may be produced, despite of the
many procedures developed to reduce noise at each one of these steps and to control the quality of the generated
data. Therefore, once the expression levels (read counts) have been obtained, it is absolutely necessary to be able
to detect potential biases or contamination before proceeding with further analysis (e.g. differential expression).
The technology biases, such as the transcript length, GC content, PCR artifacts, uneven transcript read coverage,
contamination by off-target transcripts or big differences in transcript distributions, are factors that interfere in
the linear relationship between transcript abundance and the number of mapped reads at a gene locus (counts).

In this section, we present a set of plots to explore the count data that may be helpful to detect these potential
biases so an appropriate normalization procedure can be chosen. For instance, these plots will be useful for seeing
which kind of features (e.g. genes) are being detected in our RNA-seq samples and with how many counts, which
technical biases are present, etc.

As it will be seen at the end of this section, it is also possible to generate a report in a PDF file including all
these exploratory plots for the comparison of two samples or two experimental conditions.

3.1 Generating data for exploratory plots

There are several types of exploratory plots that can be obtained. They will be described in detail in the following
sections. To generate any of these plots, first of all, dat function must be applied on the input data (NOISeq
object) to obtain the information to be plotted. The user must specify the type of plot the data are to be
computed for (argument type). Once the data for the plot have been generated with dat function, the plot will
be drawn with the explo.plot function. Therefore, for the quality control plots, we will always proceed like in the
following example:

> myexplodata <- dat(mydata, type = "biodetection')

Biotypes detection is to be computed for:
[1] "R1L1Kidney" "R1L2Liver" "R1L3Kidney" "R1L4Liver" "R1L6Liver" "R1L7Kidney" "R1L8Liver"
[8] "R2L2Kidney" "R2L3Liver" "R2L6Kidney"

> explo.plot(myexplodata, plottype = "persample")
To save the data in a user-friendly format, the dat2save function can be used:
> mynicedata <- dat2save(myexplodata)

We have grouped the exploratory plots in three categories according to the different questions that may arise
during the quality control of the expression data:

e Biotype detection: Which kind of features are being detected? Is there any abnormal contamination in
the data? Did I choose an appropriate protocol?

e Sequencing depth & Expression Quantification: Would it be better to increase the sequencing depth
to detect more features? Are there too many features with low counts? Are the samples very different
regarding the expression quantification?

e Sequencing bias detection: Should the expression values be corrected for the length or the GC content
bias? Should a normalization procedure be applied to account for the differences among RNA composition
among samples?

e Batch effect exploration: Are the samples clustered in concordance with the experimental design or
with the batch in which they were processed?

3.2 Biotype detection

When a biological classification of the features is provided (e.g. Ensembl biotypes), the following plots are useful
to see which kind of features are being detected. For instance, in RNA-seq, it is expected that most of the genes
will be protein-coding so detecting an enrichment in the sample of any other biotype could point to a potential
contamination or at least provide information on the sample composition to take decision on the type of analysis
to be performed.

3.2.1 Biodetection plot

The example below shows how to use the dat and explo.plot functions to generate the data to be plotted and
to draw a biodetection plot per sample.

> mybiodetection <- dat(mydata, k = 0, type = "biodetection", factor = NULL)

Biotypes detection is to be computed for:
[1] "R1L1Kidney" "R1L2Liver" "R1L3Kidney" "R1L4Liver" "R1L6Liver" "R1L7Kidney" "R1L8Liver"
[8] "R2L2Kidney" "R2L3Liver" "R2L6Kidney"

> par(mfrow = c(1, 2))
> explo.plot(mybiodetection, samples = c(1, 2), plottype = "persample")

Fig. 1 shows the “biodetection" plot per sample. The gray bar corresponds to the percentage of each biotype
in the genome (i.e. in the whole set of features provided), the stripped color bar is the proportion detected in our
sample (with number of counts higher than k), and the solid color bar is the percentage of each biotype within
the sample. The vertical green line separates the most abundant biotypes (in the left-hand side, corresponding
to the left axis scale) from the rest (in the right-hand side, corresponding to the right axis scale).

When factor=NULL, the data for the plot are computed separately for each sample. If factor is a string
indicating the name of one of the columns in the factor object, the samples are aggregated within each of these
experimental conditions and the data for the plot are computed per condition. In this example, samples in
columuns 1 and 2 from expression data are plotted and the features (genes) are considered to be detected if having
a number of counts higher than k=0.

R1L1Kidney R1L2Liver

% in genome % in genome
80 o | detected &S 80 — detected S
M % in sample W % in sample
™ o«
60 — -3 60 — -3
8 8
E E
8 o8 o
s 40 7 Fos 40 7 F o
i i
é é
é % < a é <
207 1 s 27 11 o
A 7 A 7
AN 7 A a
A A A A A /
o 447] Lo o 447] L o

miRNA -

=) 5 ® 0 0o © Q0 D o o 58 9 0 © 0 O D
S c <Z: <Z(<Z(§ % % 2 9o ¢ ¢ c c £ c c <Z(<Z(§ % % 2 o ¢ € c ¢ £
5 © 5 £ & & & o 7 5 @ 5 £ 0 & & & 7
° S o ° S =]
g o & B:I rTxerxr g o oo 58 g o & 'II T x ¢ 2 ¢ oo 9 938
S, S & o 2 ¢ E § = - >I) QI ° ° € &6 g 2 g g = - >I) UI S
= 3 QL 0 = 5 £ | 1 3 | < = 3 Q2 0 = s £ | 1 3 | <
g 2 € 5% 0 2 S T 2 E S T0 0 2 S
o] s 20 2 o 2 2 2 ° = =2 @ g
° [0} o Q
s a o s 8 o
5] = @ =
g s g s
<4 5] = <]
a £ S £
= =
] =]
=% o

Figure 1: Biodetection plot (per sample)

When two samples or conditions are to be compared, it can be more practical to represent both o them in
the same plot. Then, two different plots can be generated: one representing the percentage of each biotype in
the genome being detected in the sample, and other representing the relative abundance of each biotype within
the sample. The following code can be used to obtain such plots:

> par(mfrow = c(1, 2))
> explo.plot(mybiodetection, samples = c(1, 2), toplot = "protein_coding",
+ plottype = "comparison")

[1] "Percentage of protein_coding biotype in each sample:"
R1L1Kidney R1L2Liver
91.0 91.7
[1] "Confidence interval at 95% for the difference of percentages: R1L1Kidney - R1L2Liver"
[1] -1.799 0.423
[1] "The percentage of this biotype is NOT significantly different for these two samples (p-value = 0.2:

Biotype detection over genome total Relative biotype abundance in sample

100 —
= RI1L1Kidney

80 — ® RI1L2Liver

80 - —e— % in genome

60 —
60 —

40 —
40 —

% detected features
Relative % biotypes

20 4 20 —

i . —
0~ 0 S B B B L L
2 0 < € € €« €« €« B8 2 9 9o 9o 0 O o o = o) %)
82 ::2::£:8¢8¢8 8 ¢ §E g2 2 < £ £ 2 8 8 §
8 r @ ¥ ¢ 2 o ° () =3 c
g o r X 3 5 9 9 9 8] r @ ¥ ¥ ¥ ¥ § & £
3 9 < I 2 9 E 2 2 (] 1 8 o =] r = @ =
8 8 g 5 £ §F E - > T O 9 o S g e 2 E ¢ 2 O
< 3 2 & = s t 2 3 T 8 @ o c c s =
T 9 € 5% 0 0 8 5] 5 2 6 = e <
T 0 2 0 g O g =4 = <
5 4 3 a = T 3 S |
2 2 i 2 7] -
I3 a Q o Q o}
Q < = 0
o S Q 0
2] 8
5 g
S S

Figure 2: Biodetection plot (comparison of two samples)

In addition, the “biotype comparison” plot also performs a proportion test for the chosen biotype (argument
toplot) to test if the relative abundance of that biotype is different in the two samples or conditions compared.

3.2.2 Count distribution per biotype

The “countsbio" plot (Fig. 3) per biotype allows to see how the counts are distributed within each biological
group. In the upper side of the plot, the number of detected features that will be represented in the boxplots
is displayed. The values used for the boxplots are either the counts per million (if norm = FALSE) or the values
provided by the use (if norm = TRUE) The following code was used to draw the figure. Again, data are computed
per sample because no factor was specified (factor=NULL). To obtain this plot using the explo.plot function and
the “countsbio" data, we have to indicate the “boxplot" type in the plottype argument, choose only one of the
samples (samples = 1, in this case), and all the biotypes (by setting toplot parameter to 1 or "global").

> mycountsbio = dat(mydata, factor = NULL, type = "countsbio")

[1] "Count distributions are to be computed for:"
[1] "RiL1Kidney" "R1L2Liver" "R1L3Kidney" "R1L4Liver" "R1L6Liver" "R1L7Kidney" "R1L8Liver"
[8] "R2L2Kidney" "R2L3Liver" "R2L6Kidney"

> explo.plot(mycountsbio, toplot = 1, samples = 1, plottype = "boxplot")

3.3 Sequencing depth & Expression Quantification

The plots in this section can be generated by only providing the expression data, since no other biological
information is required. Their purpose is to assess if the sequencing depth of the samples is enough to detect the
features of interest and to get a good quantification of their expression.

3.3.1 Saturation plot

The “Saturation" plot shows the number of features in the genome detected with more than k counts with
the sequencing depth of the sample, and with higher and lower simulated sequencing depths. This plot can be

R1L1Kidney

5 ~ @
o 0 « S Q I -3 o « Q Q S & pa X
.
|
|
\
o \
\
8 — !
S \
" |
] o !
= —_ —_ '
(—g 1 ' 1 o
' ' '
Q
5 8 — ' ' |
R 3 —_ \ ! |
@ | \ ! | o
\
o ! 1 h
o — ' o) ! [S]
53 —_ . : :
]]) ' —_
o ' ' ' T
' H ' [e) '
.
: Q : _ . .
—_— O l Ll 1
° . I ° : I I
o | —_ = magliE I N
I I I I I I I I I I I I I I I
¢ ¢ ¢ ¢ < < < 2 ¢ B 2 2 < £ g
[} @ @ c 5 9] 5 5 [9]
> o > @ % 4 D:I B > 2 B > x % Dé
ol) >| 2 < € I3} . 9. 3 S ° S 7] c
| I | s = 2 infadio 3 5 c > o
4} o o £ 9] 3 | ‘T 3
= = c a3 ° = a3
i Q <
Q A =3
= 143
s 3
o =
I o
>
<]
(=8

Figure 3: Count distribution per biotype in one of the samples (for genes with more than 0 counts). At the upper
part of the plot, the number of detected features within each biotype group is displayed.

generated by considering either all the features or only the features included in a given biological group (biotype),
if this information is available. First, we have to generate the saturation data with the function dat and then we
can use the resulting object to obtain, for instance, the plots in Fig. 4 and 5 by applying explo.plot function.
The lines show how the number of detected features increases with depth. When the number of samples to plot is
1 or 2, bars indicating the number of new features detected when increasing the sequencing depth in one million
of reads are also drawn. In that case, lines values are to be read in the left Y axis and bar values in the right
Y axis. If more than 2 samples are to be plotted, it is difficult to visualize the “newdetection bars”, so only the
lines are shown in the plot.

> mysaturation = dat(mydata, k = 0, ndepth = 7, type = "saturation")
> explo.plot(mysaturation, toplot = 1, samples = 1:2, yleftlim = NULL, yrightlim = NULL)

> explo.plot(mysaturation, toplot = "protein_coding", samples = 1:4)

The plot in Fig. 4 has been computed for all the features (without specifying a biotype) and for two of the
samples. Left Y axis shows the number of detected genes with more than 0 counts at each sequencing depth,
represented by the lines. The solid point in each line corresponds to the real available sequencing depth. The
other sequencing depths are simulated from this total sequencing depth. The bars are associated to the right Y
axis and show the number of new features detected per million of new sequenced reads at each sequencing depth.
The legend in the gray box also indicates the percentage of total features detected with more than k& = 0 counts
at the real sequencing depth.

Up to twelve samples can be displayed in this plot. In Fig. 5, four samples are compared and we can see, for
instance, that in kidney samples the number of detected features is higher than in liver samples.

3.3.2 Count distribution per sample

It is also interesting to visualize the count distribution for all the samples, either for all the features or for
the features belonging to a certain biological group (biotype). Fig. 6 shows this information for the biotype
“protein__coding", which can be generated with the following code on the “countsbio" object obtained in the
previous section by setting the samples parameter to NULL.

> explo.plot (mycountsbio, toplot = "protein_coding", samples = NULL, plottype = "boxplot")

GLOBAL (5088)

T
2500

|
1500

Number of detected features
3400 3600 3800 4000 4200 4400
New detections per million reads

T
500

Sequencing depth (million reads)

Left axis Right axis %detected

R1L1Kidney ° 85.4
R1L2Liver o 80.9

Figure 4: Global saturation plot to compare two samples of kidney and liver, respectively.

PROTEIN_CODING (4347)

Number of detected features
3600 3800 4000
| |
¢
cp\
®

3400

R1L1Kidney: 90.9% detected
©— RI1L2Liver: 86.8% detected —@— R1L4Liver: 86.5% detected

T T T T T T T 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3200

Sequencing depth (million reads)

Figure 5: Saturation plot for protein-coding genes to compare 4 samples: 2 of kidney and 2 of liver.

3.3.3 Sensitivity plot

Features with low counts are, in general, less reliable and may introduce noise in the data that makes more difficult
to extract the relevant information, for instance, the differentially expressed features. We have implemented some
methods in the NOISeq package to filter out these low count features. The “Sensitivity plot” in Fig. 7 helps to
decide the threshold to remove low-count features by indicating the proportion of such features that are present
in our data. In this plot, the bars show the percentage of features within each sample having more than 0 counts
per million (CPM), or more than 1, 2, 5 and 10 CPM. The horizontal lines are the corresponding percentage of
features with those CPM in at least one of the samples (or experimental conditions if the factor parameter is
not NULL). In the upper side of the plot, the sequencing depth of each sample (in million reads) is given. The
following code can be used for drawing this figure.

> explo.plot (mycountsbio, toplot = 1, samples = NULL, plottype = "barplot")

PROTEIN_CODING (4347)

o o o o o
o 8 8 8 8 8
o
S 8 8 8 8 8
S 8 ° 8 o o 8 ° 8 o 8
+++AQ+QQQQ~
' 1 1 ' ' ' '
° oo : b
3 3 |
S o
@ —
>
c
S
[}
0
@ o
S
S a3
w
o |
-
' N ' N N ' N ' N '
' ' ' ' ' ' ' ' ' '
o 4 4 4 4 4 4 4 4 4L a4
T T T T T T T T T I
> 5 > 5 5 > 5 > 5 >
¢ ¢ ¢ 2 2 ¢ 2 2 & ¢
T & ¥ 3 2 B8 22 = & =2
S 2 %5 2 2 £ 2 & 37 8
g ¥ 4 ¥ o© g @ 9§ & g
o 24 24 o 24

Figure 6: Distribution of counts for protein coding genes in all samples.

04 05 04 05 05 04 05 05 05 05

CPM>0 O CPM>2 @ CPM>10
CPM>1 @ CPM>5

100

R1L1Kidney
R1L2Liver
R1L3Kidney
R1LA4Liver
R1L6Liver
R1L7Kidney
R1L8Liver
R2L2Kidney
R2L3Liver
R2L6Kidney

Figure 7: Number of features with low counts for each sample.

3.4 Sequencing bias detection

Prior to perform further analyses such as differential expression, it is essential to normalize data to make the
samples comparable and remove the effect of technical biases from the expression estimation. The plots presented
in this section are very useful for detecting the possible biases in the data. In particular, the biases that can be
studied are: the feature length effect, the GC content and the differences in RNA composition. In addition, these
are diagnostic plots, which means that they are not only descriptive but an statistical test is also conducted to
help the user to decide whether the bias is present and the data needs normalization.

3.4.1 Length bias

The “lengthbias" plot describes the relationship between the feature length and the expression values. Hence,
the feature length must be included in the input object created using the readData function. The data for this
plot is generated as follows. The length is divided in intervals (bins) containing 200 features and the middle
point of each bin is depicted in X axis. For each bin, the 5% trimmed mean of the corresponding expression
values (CPM if norm=FALSE or values provided if norm=TRUE) is computed and depicted in Y axis. If the number
of samples or conditions to appear in the plot is 2 or less and no biotype is specified (toplot = “global"), a

10

diagnostic test is provided. A cubic spline regression model is fitted to explain the relationship between length
and expression. Both the model p-value and the coefficient of determination (R2) are shown in the plot as well
as the fitted regression curve. If the model p-value is significant and R2 value is high (more than 70%), the
expression depends on the feature length and the curve shows the type of dependence.

Fig. 8 shows an example of this plot. In this case, the “lengthbias" data were generated for each condition
(kidney and liver) using the argument factor.

> mylengthbias = dat(mydata, factor = "Tissue", type = "lengthbias")
> explo.plot(mylengthbias, samples = NULL, toplot = "global")

Kidney Liver
o
L J Lo — @
e —
[L _J
IS -
o o
s == s =
k7] k7] ®
o ® o
[T [T
> >
[« 5] fa [« 5]
s = 7 =
D D Py
= = =T
Lo
o 1
Lo R2 = 48.04%0 R2 = 52.28%0
Py p—value: 0.0083 p—value: 0.0038
L) |8 f—) |8
T T T T T T T T T T T T T T
Oe+00 3e+05 6e+05 Oe+00 3e+05 6e+05

Length bins Length bins

Figure 8: Gene length versus expression.

More details about the fitted spline regression models can be obtained by using the show function as per
below:

> show(mylengthbias)

[1] "Kidney"

Call:
Im(formula = datos[, il ~ bx)

Residuals:

Min 1Q Median 3Q Max
-85.40 -19.60 3.05 25.85 74.83
Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>[tl)

(Intercept) 121.3 48.6 2.49 0.0215 *
bx1 -35.0 52.2 -0.67 0.5108
bx2 269.2 88.4 3.05 0.0064 x*x
bx3 -1301.1 719.7 -1.81 0.0857 .
bx4 6292.4 4655.4 1.35 0.1916
bxb NA NA NA NA

Signif. codes: 0 ‘**x> 0.001 ‘%%’ 0.01 ‘x> 0.05 ¢

.2 0.1 ¢

Residual standard error: 48.6 on 20 degrees of freedom
Multiple R-squared:

0.48,

Adjusted R-squared:

11

0.376

F-statistic: 4.62 on 4 and 20 DF, p-value: 0.00833
[1] "Liver"

Call:
Im(formula = datos[, il ~ bx)

Residuals:
Min 1Q Median 3Q Max
-51.8 -18.2 0.0 21.3 42.3

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>[tl)

(Intercept) 42.2 29.7 1.42 0.17073

bx1 10.7 31.9 0.34 0.73952
bx2 222.1 54.0 4.12 0.00054 *x*x
bx3 -1141.7 439.3 -2.60 0.01716 =*
bx4 5758.1 2841.2 2.03 0.05624 .
bx5 NA NA NA NA

Signif. codes: 0 ‘**x’> 0.001 ‘*x”> 0.01 ‘x> 0.05 “.” 0.1 ¢ ° 1

Residual standard error: 29.7 on 20 degrees of freedom
Multiple R-squared: 0.523, Adjusted R-squared: 0.427
F-statistic: 5.48 on 4 and 20 DF, p-value: 0.00382

3.4.2 GC content bias

The “GCbias" plot describes the relationship between the feature GC content and the expression values. Hence,
the feature GC content must be included in the input object created using the readData function. The data for
this plot is generated in an analogous way to the “lengthbias" data. The GC content is divided in intervals (bins)
containing 200 features. The middle point of each bin is depicted in X axis. For each bin, the 5% trimmed mean
of the corresponding expression values is computed and depicted in Y axis. If the number of samples or conditions
to appear in the plot is 2 or less and no biotype is specified (toplot = “global"), a diagnostic test is provided.
A cubic spline regression model is fitted to explain the relationship between GC content and expression. Both
the model p-value and the coefficient of determination (R2) are shown in the plot as well as the fitted regression
curve. If the model p-value is significant and R2 value is high (more than 70%), the expression will depend on
the feature GC content and the curve will show the type of dependence.

An example of this plot is in Fig. 9. In this case, the “GCbias" data were also generated for each condition
(kidney and liver) using the argument factor.

> myGCbias = dat(mydata, factor = "Tissue", type = "GCbias")
> explo.plot (myGCbias, samples = NULL, toplot = "global")

3.4.3 RNA composition

When two samples have different RNA composition, the distribution of sequencing reads across the features is
different in such a way that although a feature had the same number of read counts in both samples, it would
not mean that it was equally expressed in both. To check if this bias is present in the data, the “cd" plot and
the correponding diagnostic test can be used. In this case, each sample s is compared to the reference sample
r (which can be arbitrarily chosen). To do that, M values are computed as log2(counts; = counts,). If no bias
is present, it should be expected that the median of M values for each comparison is 0. Otherwise, it would
be indicating that expression levels in one of the samples tend to be higher than in the other, and this could
lead to false discoveries when computing differencial expression. Confidence intervals for the M median are also
computed by bootstrapping. If value 0 does not fall inside the interval, it means that the deviation of the sample
with regard to the reference sample is statistically significant. Therefore, a normalization procedure such as
Upper Quartile, TMM or DESeq should be used to correct this effect and make the samples comparable before
computing differential expression. Confidence intervals can be visualized by using show function.

See below an usage example and the resulting plot in Fig. 10. It must be indicated if the data provided are
already normalized (norm=TRUE) or not (norm=FALSE). The reference sample may be indicated with the refColumn

12

Kidney Liver

[
[] N []
[
S —
[N |
b []
[
—
=
— — — S
=] =]
w w
w w
=4 =4
o o
s S8 &
— ~ —
< <
D D
= = —
8
R2 = 61.92%0 P R2 = 43.85%0
[N}]
p—value: 0.00046 p—value: O0.017
L] — [] —
T T T T T T T T
30 40 50 680 30 40 50 680
GC content bins GC content bins

Figure 9: Gene GC content versus expression.

parameter (by default, the first column is used). Additional plot parameters may also be used to modify some
aspects of the plot.

> mycd = dat(mydata, type = "cd", norm = FALSE, refColumn = 1)

[1] "Reference sample is: R1L1Kidney"
[1] "Confidence intervals for median of M:"

0.28% 99.72% Diagnostic Test
RiL2Liver "-0.884904075368103" "-0.776512988170052" "FAILED"
R1L3Kidney "-0.0471703644087826" "-0.0471703644087824" "FAILED"
RiL4Liver "-0.879934058629541" "-0.7556398608207197" "FAILED"
RiL6Liver "-0.908647973214064" "-0.764581847101215" "FAILED"
R1L7Kidney "0.0348451027997053" "0.0348451027997056" "FAILED"
RiL8Liver "-0.903981375462208" "-0.760538326376263" "FAILED"
R2L2Kidney "-0.0850229820491386" "-0.0462815520907556" "FAILED"
R2L3Liver "-0.87753937476552" "-0.752824204835523" "FAILED"

R2L6Kidney "-0.0712854931230556" "-0.0376706479108922" "FAILED"
[1] "Diagnostic test: FAILED. Normalization is required to correct this bias."

> explo.plot (mycd)

In the plot can be seen that the M median is deviated from 0 in most of the cases. This is corraborated by
the confidence intervals for the M median.

3.5 PCA exploration

One of the techniques that can be used to visualize if the experimental samples are clustered according to the
experimental design or if there is an unwanted source of noise in the data that hampers this clustering is the
Principal Component Analysis (PCA).

PCA is a dimension reduction method that does not require any distributional assumption, but it usually
works better if data distribution is not too skewed, as happens in RNA-seq data. This is why, NOISeq package
log-tranforms the expression data when users indicate that they have not already been log-tranformed.

NOISeq PCA function allows to plot the loading values, that is, the projection of the genes on the new
principal components, or the scores, which are the projections of the samples (observations) on the space created
by the new componets.

To illustrate the utility of the PCA plots, we took Marioni’s data and artificially added a batch effect to the
first four samples that would belong then to bath 1. The rest of samples would belong to batch2, so we also
create an additional factor to collect the batch information.

13

Reference sample: R1L1Kidney

—— RI1L2Liver
—— RI1L3Kidney
o | — RiL6Liver |
- 7| — RI1L7Kidney
—— R2L2Kidney
—— R2L3Liver
2 o L
c - |
[|
a i
i
n | i
© i“
o | i
o i
T T T T 1

-10 -5 0 5 10

M = log2(sample/refsample)

Figure 10: RNA composition plot

set.seed(123)

mycounts2 = mycounts

mycounts2[, 1:4] = mycounts2[, 1:4] + runif(nrow(mycounts2) * 4, 3, 5)
myfactors = data.frame(myfactors, batch = c(rep(1, 4), rep(2, 6)))
mydata2 = readData(mycounts2, factors = myfactors)

vV V. Vv VvV

Now we can run the following code to plot the samples scores for the two principal components of the PCA
and color them by the factor “Tissue” (left hand plot) or by the factor “batch” (right hand plot):

> myPCA = dat(mydata2, type = "PCA")
> par(mfrow = c(1, 2))

> explo.plot(myPCA, factor = "Tissue")
> explo.plot(myPCA, factor = "batch")

We can appreciate in these plots that the two batches are quite separated so removing the batch effect should
improve the clustering of the samples. More information on how to do that with NOISeq can be found in Section
4.3.

3.6 Quality Control report

The QCreport function allows the user to quickly generate a pdf report showing the exploratory plots described
in this section to compare either two samples (if factor=NULL) or two experimental conditions (if factor is
indicated). Depending on the biological information provided (biotypes, length or GC content), the number of
plots included in the report may differ.

> QCreport (mydata, samples = NULL, factor = "Tissue", norm = FALSE)

This report can be generated before normalizing the data (norm = FALSE) or after normalization to check if
unwanted effects were corrected (norm = TRUE).
Please note that the data are log-transformed when computing Principal Component Analysis (PCA).

4 Normalization, Low-count filtering & Batch effect correction
The normalization step is very important in order to make the samples comparable and to remove possibles biases

in the data. It might also be useful to filter out low expression data prior to differential expression analysis, since
they are less reliable and may introduce noise in the analysis.

14

Scores Scores
- Kidney - 1
e Liver - 2
s - A s |1 @&
= o = @
~ ~—
(ap] o
~d ~d
P (e — P (e —
o (=T
T T
L) A
T T T T T T
—50 o 50 —50 o 50
PC 1 58 %6 PC 1 58 %6

Figure 11: PCA plot colored by tissue (left) and by batch (right)

Next sections explain how to use NOISeq package to normalize and filter data before performing any statistical
analysis.

4.1 Normalization

We strongly recommend to normalize the counts to correct, at least, sequencing depth bias. The normalization
techniques implemented in NOISeq are RPKM [4], Upper Quartile [5] and TMM, which stands for Trimmed
Mean of M values [6], but the package accepts data normalized with any other method as well as data previously
transformed to remove batch effects or to reduce noise.

The normalization functions (rpkm, tmm and uqua) can be applied to common R matrix and data frame objects.
Please, find below some examples on how to apply them to data matrix extracted from NOISeq data objects:

)
0)

> myRPKM = rpkm(assayData(mydata)$exprs, long = mylength, k = 0, Ilc
> myUQUA = uqua(assayData(mydata)$exprs, long = mylength, lc = 0.5,
> myTMM = tmm(assayData(mydata)$exprs, long = 1000, lc = 0)

> head (myRPKM[, 1:4])

=
=

R1L1Kidney R1L2Liver R1L3Kidney R1L4Liver

ENSG00000177757 1.87 0.816 0.000 0.000
ENSG00000187634 22.60 10.891 19.193 13.636
ENSG00000188976 43.36 17.664 44 .265 28.926
ENSG00000187961 6.95 3.241 6.724 5.236
ENSG00000187583 0.27 0.000 0.262 0.235
ENSG00000187642 1.33 0.000 1.615 0.000

If the length of the features is provided to any of the normalization functions, the expression values are divided
by (length/1000)". Thus, although Upper Quartile and TMM methods themselves do not correct for the length
of the features, NOISeq allows the users to combine these normalization procedures with an additional length
correction whenever the length information is available. If lc = 0, no length correction is applied. To obtain
RPKM values, lc = 1 in rpkm function must be indicated. If long = 1000 in rpkm function, CPM values (counts
per million) are returned.

The k parameter is used to replace the zero values in the expression matrix with other non-zero value in order
to avoid indetermination in some calculations such as fold-change. If kK = NULL, each 0 is replaced with the
midpoint between 0 and the next non-zero value in the matrix.

15

4.2 Low-count filtering

Excluding features with low counts improves, in general, differential expression results, no matter the method
being used, since noise in the data is reduced. However, the best procedure to filter these low count features has
not been yet decided nor implemented in the differential expression packages. NOISeq includes three methods to
filter out features with low counts:

e CPM (method 1): The user chooses a value for the parameter counts per million (CPM) in a sample under
which a feature is considered to have low counts. The cutoff for a condition with s samples is CPM X s.
Features with sum of expression values below the condition cutoff in all conditions are removed. Also a
cutoff for the coefficient of variation (in percentage) per condition may be established to eliminate features
with inconsistent expression values.

e Wilcoxon test (method 2): For each feature and condition, Hy : m = 0 is tested versus Hy : m > 0, where
m is the median of counts per condition. Features with p-value > 0.05 in all conditions are filtered out.
P-values can be corrected for multiple testing using the p.adj option. This method is only recommended
when the number of replicates per condition is at least 5.

e Proportion test (method 3): Similar procedure to the Wilcoxon test but testing Hy : p = po versus
Hy : p > po, where p is the feature relative expression and py = CPM/105. Features with p-value > 0.05
in all conditions are filtered out. P-values can be corrected for multiple testing using the p.adj option.

This is an usage example of function filtered.data directly on count data with CPM method (method 1):

> myfilt = filtered.data(mycounts, factor = myfactors$Tissue, norm = FALSE,
+ depth = NULL, method = 1, cv.cutoff = 100, cpm = 1, p.adj = "fdr")

Filtering out low count features...
4406 features are to be kept for differential expression analysis with filtering method 1

The “Sensitivity plot” described in previous section can help to take decisions on the CPM threshold to use
in methods 1 and 3.

4.3 Batch effect correction

When a batch effect is detected in the data or the samples are not properly clustered due to an unknown source of
technical noise, it is usually appropriate to remove this batch effect or noise before proceeding with the differential
expression analysis (or any other type of analysis).

ARSyNseq (ASCA Removal of Systematic Noise for sequencing data) is an R function implemented in NOISeq
package that is designed for filtering the noise associated to identified or unidentified batch effects. The ARSyN
method [7] combines analysis of variance (ANOVA) modeling and multivariate analysis of estimated effects (PCA)
to identify the structured variation of either the effect of the batch (if the batch information is provided) or the
ANOVA errors (if the batch information is unknown). Thus, ARSyNseq returns a filtered data set that is rich in
the information of interest and includes only the random noise required for inferential analysis.

The main arguments of the ARSyNseq function are:

e data: A Biobase’s eSet object created with the readData function.

e factor: Name of the factor (as it was given to the readData function) to be used in the ARSyN model
(e.g. the factor containing the batch information). When it is NULL, all the factors are considered.

e batch: TRUE to indicate that the factor argument indicates the batch information. In this case, the
factor argument must be used to specify the names of the onlu factor containing the information of the
batch.

(1))

e norm: Type of normalization to be used. One of “rpkm” (default), “uqua”, “tmm” or “n” (if data are
already normalized). If length was provided through the readData function, it will be considered for the
normalization (except for “n”). Please note that if a normalization method if used, the arguments 1c and
k are set to 1 and 0 respectively.

e logtransf: If FALSE, a log-transformation will be applied on the data before computing ARSyN model
to improve the results of PCA on count data.

Therefore, we can differentiate two types of analysis:

16

1. When batch is identified with one of the factors described in the argument factor of the data object,
ARSyNseq estimates this effect and removes it by estimating the main PCs of the ANOVA effects associated.
In such case factor argument will be the name of the batch and batch=TRUE.

2. When batch is not identified, the model estimates the effects associated to each factor of interest and
analyses if there exists systematic noise in the residuals. If there is batch effect, it will be identified and
removed by estimating the main PCs of these residuals. In such case factor argument can have several
factors and batch=FALSE.

We will use the toy example generated in Section 3.5 to illustrate how ARSyNseq works. This is the code to
use ARSyNseq batch effect correction when the user knows the batch in which the samples were processed, and
to represent a PCA with the filtered data in order to see how the batch effect was corrected (Figure 12:

> mydata2corrl = ARSyNseq(mydata2, factor = "batch", batch = TRUE, norm = "rpkm",
+ logtransf = FALSE)

> myPCA = dat(mydata2corrl, type = "PCA")

> par(mfrow = c(1, 2))
>
>

explo.plot(myPCA, factor = "Tissue")

explo.plot (myPCA, factor = "batch")
Scores Scores
P - Kidney P i B
© 7| e Liver oS T e 2
[— [—]
S S
f @ A f @ @
= =
o~ o~
L o P L LS S
[[
T T
] [l
i I
o [
< T 7
T T T T T T T T T T T T T T
—60 —20 20 60 —60 —20 20 60
PC 1 88 %26 PC 1 88 %96

Figure 12: PCA plot after correcting a known batch effect with ARSyNseq. The samples are colored by tissue
(left) and by batch (right)

Let us suppose now that we do not know the batch information. However, we can appreciate in the PCA plot
of Section 3.5 that there is an unknown source of noise that prevents the samples from clustering well. In this
case, we can run the following code to reduce the unidentified batch effect and to draw the PCA plots on the
filtered data:

> mydata2corr2 = ARSyNseq(mydata2, factor = "Tissue", batch = FALSE, norm = "rpkm",
+ logtransf = FALSE)

> myPCA = dat(mydata2corr2, type = "PCA")

> par(mfrow = c(1, 2))
>
>

explo.plot (myPCA, factor = "Tissue")
"batch")

explo.plot (myPCA, factor

17

Scores Scores

= _| - Kidney = _| - 1
= e Liver «« - 2
[1 D —
s S
[) 1 [—
S @ PN & e L
= =
~d ~d
o~ = 4 @ VN o~ = — A D
S P 2 S o [
[[
T A
[l [a—]
D A
o [a]
< T 7]
T T T T T T T T T T T T T T
—60 —20 20 60 —60 —20 20 60
PC 1 88 26 PC 1 88 26

Figure 13: PCA plot after correcting an unidentified batch effect with ARSyNseq. The samples are colored by
tissue (left) and by batch (right)

5 Differential expression

The NOISeq package computes differential expression between two experimental conditions given the expression
level of the considered features. The package includes two non-parametric approaches for differential expression
analysis: NOISeq [1] for technical replicates or no replication at all, and NOISeqBIO [2], which is optimized for the
use of biological replicates. Both methods take read counts from RNA-seq as the expression values, in addition
to previously normalized data and read counts from other NGS technologies.

In the previous section, we described how to use normalization and filtering functions prior to perform
differential expression analysis. However, when using NOISeq or NOISeqBIO to compute differential expression,
it is not necessary to normalize or filter low counts before applying these methods because they include these
options. Thus, normalization can be done automatically by choosing the corresponding value for the parameter
norm. Furthermore, they also accept expression values normalized with other packages or procedures. If the data
have been previously normalized, norm parameter must be set to “‘n”. Regarding the low-count filtering, it is not
necessary to filter in NOISeq method. In contrast, it is recommended to do it in NOISeqBIO, which by default
filters out low-count features with CPM method (filter=1).

The following sections describe in more detail the NOISeq and NOISeqBIO methods.

5.1 NOISeq

NOISeq method was designed to compute differential expression on data with technical replicates (NOISeq-real)
or no replicates at all (NOISeqg-sim). If there are technical replicates available, it summarizes them by summing
up them. It is also possible to apply this method on biological replicates, that are averaged instead of summed.
However, for biological replicates we strongly recommend NOISeqBIO. NOISeq computes the following differential
expression statistics for each feature: M (which is the logs-ratio of the two conditions) and D (the value of the
difference between conditions). Expression levels equal to 0 are replaced with the given constant k& > 0, in order
to avoid infinite or undetermined M-values. If kK = NULL, the 0 is replaced by the midpoint between 0 and
the next non-zero value in the expression matrix. A feature is considered to be differentially expressed if its
corresponding M and D values are likely to be higher than in noise. Noise distribution is obtained by comparing
all pairs of replicates within the same condition. The corresponding M and D values are pooled together to
generate the distribution. Changes in expression between conditions with the same magnitude than changes
in expression between replicates within the same condition should not be considered as differential expression.
Thus, by comparing the (M, D) values of a given feature against the noise distribution, NOISeq obtains the
“probability of differential expression” for this feature. If the odds Pr(differential expression)/Pr(non-differential
expression) are higher than a given threshold, the feature is considered to be differentially expressed between
conditions. For instance, an odds value of 4:1 is equivalent to ¢ = Pr(differential expression) = 0.8 and it means

18

that the feature is 4 times more likely to be differentially expressed than non-differentially expressed. The NOISeq
algorithm compares replicates within the same condition to estimate noise distribution (NOISeqg-real). When no
replicates are available, NOISeg-sim simulates technical replicates in order to estimate the differential expression
probability. Please remember that to obtain a really reliable statistical results, you need biological replicates.
NOISeqg-sim simulates technical replicates from a multinomial distribution, so be careful with the interpretation
of the results when having no replicates, since they are only an approximation and are only showing which genes
are presenting a higher change between conditions in your particular samples.

Table 1 summarizes all the input options and includes some recommendations for the values of the parameters
when using NOISeq:

Table 1: Possibilities for the values of the parameters

Method Replicates Counts norm k nss pnr v

NOISeq-real Technical/Biological ii?malize d ;pkm, uqua, tom %;LL 0 - -

NOISeq-sim None Ez‘r”mahze 1 kam, uqua, tmm %%LL >5 02 0.02
Please note that norm = "n" argument should be used in noiseq or noiseqgbio whenever the data have been

previously normalized or corrected for a batch effect.

5.1.1 NOISeqg-real: using available replicates

NOISeqg-real estimates the probability distribution for M and D in an empirical way, by computing M and D
values for every pair of replicates within the same experimental condition and for every feature. Then, all these
values are pooled together to generate the noise distribution. Two replicates in one of the experimental conditions
are enough to run the algorithm. If the number of possible comparisons within a certain condition is higher than
30, in order to reduce computation time, 30 pairwise comparisons are randomly chosen when estimating noise
distribution.

It should be noted that biological replicates are necessary if the goal is to make any inference about the
population. Deriving differential expression from technical replicates is useful for drawing conclusions about the
specific samples being compared in the study but not for extending these conclusions to the whole population.

In RNA-seq or similar sequencing technologies, the counts from technical replicates (e.g. lanes) can be summed
up. Thus, this is the way the algorithm summarizes the information from technical replicates to compute M and
D signal values (between different conditions). However, for biological replicates, other summary statistics such
us the mean may be more meaningful. NOISeq calculates the mean of the biological replicates but we strongly
recommend to use NOISeqBIO when having biological replicates.

Here there is an example with technical replicates and count data normalized by rpkm method. Please note
that, since the factor “Tissue” has two levels, we do not need to indicate which conditions are to be compared.

> mynoiseq = noiseq(mydata, k = 0.5, norm = "rpkm", factor = "Tissue", pnr = 0.2,
+ nss =5, v =0.02, 1c = 1, replicates = "technical")

[1] "Computing (M,D) values..."
[1] "Computing probability of differential expression..."

> head(mynoiseq@results[[1]])

Kidney_mean Liver_mean M D prob ranking Length GC Chrom GeneStart
ENSG00000177757 1.448 0.493 1.553 0.955 0.621 1.82 2464 48.6 1 742614
ENSG00000187634 19.860 11.706 0.763 8.154 0.751 8.19 4985 66.0 1 850393
ENSG00000188976 42.631 24.290 0.812 18.341 0.787 18.36 3870 59.5 1 869459
ENSG00000187961 6.289 5.225 0.267 1.064 0.428 1.10 4964 67.9 1 885830
ENSG00000187583 0.419 0.143 1.553 0.276 0.401 1.58 8507 62.6 1 891740
ENSG00000187642 2.524 0.412 2.616 2.113 0.782 3.36 6890 67.7 1 900447

GeneEnd Biotype
ENSGO0000177757 745077 lincRNA

ENSG00000187634 869824 protein_coding
ENSG00000188976 884494 protein_coding
ENSG00000187961 890958 protein_coding

19

ENSG00000187583 900339 protein_coding
ENSG00000187642 907336 protein_coding

NA values would be returned if the gene had 0 counts in all the samples. In that case, the gene would not be
used to compute differential expression.

Now imagine you want to compare tissues within the same sequencing run. Then, see the following example
on how to apply NOISeq on count data with technical replicates, TMM normalization, and no length correction.
As “TissueRun” has more than two levels we have to indicate which levels (conditions) are to be compared:

> mynoiseq.tmm = noiseq(mydata, k = 0.5, norm = "tmm", factor = "TissueRun",
+ conditions = c("Kidney_1", "Liver_1"), lc = 0, replicates = "technical")

5.1.2 NOISeqg-sim: no replicates available

When there are no replicates available for any of the experimental conditions, NOISeq can simulate technical
replicates. The simulation relies on the assumption that read counts follow a multinomial distribution, where
probabilities for each class (feature) in the multinomial distribution are the probability of a read to map to that
feature. These mapping probabilities are approximated by using counts in the only sample of the corresponding
experimental condition. Counts equal to zero are replaced with k>0 to give all features some chance to appear.

Given the sequencing depth (total amount of reads) of the unique available sample, the size of the simulated
samples is a percentage (parameter pnr) of this sequencing depth, allowing a small variability (given by the
parameter v). The number of replicates to be simulated is provided by nss parameter.

Our dataset do has replicates but, providing it had not, you would use NOISeg-sim as in the following example
in which the simulation parameters have to be chosen (pnr, nss and v):

> myresults <- noiseq(mydata, factor = "Tissue", k = NULL, norm = "n", pnr = 0.2,
+ nss =5, v =0.02, 1c = 1, replicates = "no")

5.1.3 NOISeqBIO

NOISegBIO is optimized for the use on biological replicates (at least 2 per condition). It was developed by joining
the philosophy of our previous work together with the ideas from Efron et al. in [8]. In our case, we defined the
differential expression statistic 8 as (M + D)/2, where M and D are the statistics defined in the previous section
but including a correction for the biological variability of the corresponding feature. The probability distribution
of # can be described as a mixture of two distributions: one for features changing between conditions and the
other for invariant features. Thus, the mixture distribution f can be written as: f(0) = po fo(0) + p1 f1(6), where
po is the probability for a feature to have the same expression in both conditions and p; = 1—py is the probability
for a feature to have different expression between conditions. fy and f; are, respectively, the densities of 6 for
features with no change in expression between conditions and for differentially expressed features. If one of both
distributions can be estimated, the probability of a feature to belong to one of the two groups can be calculated.
Thus, the algorithm consists of the following steps:

1. Computing 6 values.

M
M and D are corrected for the biological variability: M* = ———— and D* =

ag + opm ag+ 0p
6%, are the standard errors of M, and D, statistics, respectively, and ag is computed as a given percentile
of all the values in 67 or 6p, as in [8] (the authors suggest the percentile 90th as the best option, which is
the default option of the parameter “aOper" that may be changed by the user). To compute the 6 statistic,
M* + D*
) .

s 52
, where 67, and

the M and D statistics are combined: 6 =

2. Estimating the values of the # statistic when there is no change in expression, i.e. the null statistic 6.
In order to compute the null density fy afterwards, we first need to estimate the values of the #-scores for
features with no change between conditions. To do that, we permute r times (parameter that may be set
by the user) the labels of samples between conditions, compute 6 values as above and pool them to obtain
fo.

3. Estimating the probability density functions f and fy.
We estimate f and fy with a kernel density estimator (KDE) with Gaussian kernel and smoothing parameter
“adj" as indicated by the user.

4. Computing the probability of differential expression given the ratio fy/f and an estimation pg for pg. If§ = z
for a given feature, this probability of differential expression can be computed as p;(z) = 1 — po fo(z)/f(2).

20

To estimate pg, the following upper bound is taken, as suggested in [8]: po < minz{f(Z)/fo(Z)}.
Moreover, it is shown in [8] that the FDR defined by Benjamini and Hochberg can be considered equivalent
to the a posteriori probability po(z) = 1 — p1(z) we are calculating.

When too few replicates are available for each condition, the null distribution is very poor since the number
of different permutations is low. For those cases (number of replicates in one of the conditions less than 5),
it is convenient to borrow information across genes. Our proposal consists of clustering all genes according to
their expression values across replicates using the k-means method. For each cluster k of genes, we consider the
expression values of all the genes in the cluster as observations within the corresponding condition (replicates)
and then we shuffle this submatrix r x g times, where gy is the number of genes within cluster k. If r x g is
higher than 1000, we compute 1000 permutations in that cluster. For each permutation, we calculate M and D
values and their corresponding standard errors. In order to reduce the computing time, if g > 1000, we again
subdivide cluster k in subclusters with k-means algorithm.

We will consider that Marioni’s data have biological replicates for the following example. In this case, the
method 2 (Wilcoxon test) to filter low counts is used. Please, use 7noiseqgbio to know more about the parameters
of the function.

> mynoisegbio = noisegbio(mydata, k = 0.5, norm = "rpkm", factor = "Tissue",
+ lc =1, r = 20, adj = 1.5, plot = FALSE, aOper = 0.9, random.seed = 12345,
+ filter = 2)

5.2 Results
5.2.1 NOISeq output object

NOISeq returns an Output object containing the following elements:

e comparison: String indicating the two experimental conditions being compared and the sense of the com-
parison.

e factor: String indicating the factor chosen to compute the differential expression.

e k: Value to replace zeros in order to avoid indetermination when computing logarithms.

e 1c: Correction factor for length normalization. Counts are divided by length'c.

e method: Normalization method chosen.

e replicates: Type of replicates: “technical" for technical replicates and “biological" for biological ones.

e results: R data frame containing the differential expression results, where each row corresponds to a
feature. The columns are: Expression values for each condition to be used by NOISeq or NOISeqBIO (the
columns names are the levels of the factor); differential expression statistics (columns“M" and “D" for N0ISeq
or “theta" for NOISeqBIO); probability of differential expression (“prob"); “ranking", which is a summary
statistic of “M" and “D" values equal to —sign(M) x v/ M? + D?, than can be used for instance in gene set
enrichment analysis (only for N0ISeq); “Length" of each feature (if provided); “GC" content of each feature
(if provided); chromosome where the feature is (“Chrom"), if provided; start and end position of the feature
within the chromosome (“GeneStart", “GeneEnd"), if provided; feature biotype (“Biotype"), if provided.

e nss: Number of samples to be simulated for each condition (only when there are not replicates available).

e pur: Percentage of the total sequencing depth to be used in each simulated replicate (only when there are
not replicates available). For instance, if pur = 0.2 , each simulated replicate will have 20% of the total
reads of the only available replicate in that condition.

e v: Variability of the size of each simulated replicate (only used by NOISeq-sim).
For example, you can use the following instruction to see the differential expression results for NOISeq:

> head(mynoiseq@results[[1]])

Kidney_mean Liver_mean M D prob ranking Length GC Chrom GeneStart
ENSG00000177757 1.448 0.493 1.553 0.955 0.621 1.82 2464 48.6 1 742614
ENSG00000187634 19.860 11.706 0.763 8.154 0.751 8.19 4985 66.0 1 850393
ENSG00000188976 42.631 24.290 0.812 18.341 0.787 18.36 3870 59.5 1 869459

21

ENSG00000187961 6.289 5.225 0.267 1.064 0.428 1.10 4964 67.9 1 885830

ENSG00000187583 0.419 0.143 1.5563 0.276 0.401 1.58 8507 62.6 1 891740

ENSG00000187642 2.524 0.412 2.616 2.113 0.782 3.36 6890 67.7 1 900447
GeneEnd Biotype

ENSG00000177757 745077 lincRNA

ENSG00000187634 869824 protein_coding
ENSG00000188976 884494 protein_coding
ENSG00000187961 890958 protein_coding
ENSG00000187583 900339 protein_coding
ENSG00000187642 907336 protein_coding

The output myresults@results[[1]]1$prob gives the estimated probability of differential expression for each
feature. Note that when using NOISeq, these probabilities are not equivalent to p-values. The higher the
probability, the more likely that the difference in expression is due to the change in the experimental condition
and not to chance. See Section 5.2 to learn how to obtain the differentially expressed features.

5.2.2 How to select the differentially expressed features

Once we have obtained the differential expression probability for each one of the features by using NOISeq or
NOISeqBIO function, we may want to select the differentially expressed features for a given threshold ¢. This can
be done with degenes function on the “output" object using the parameter q. With the argument M we choose if we
want all the differentially expressed features, only the differentially expressed features that are more expressed in
condition 1 than in condition 2 (M = “up") or only the differentially expressed features that are under-expressed
in condition 1 with regard to condition 2 (M = “down"):

> mynoiseq.deg = degenes(mynoiseq, q = 0.8, M = NULL)

[1] "1614 differentially expressed features"

> mynoiseq.degl = degenes(mynoiseq, q = 0.8, M = "up")

[1] "1289 differentially expressed features (up in first condition)"
> mynoiseq.deg2 = degenes(mynoiseq, q = 0.8, M = "down")

[1] "325 differentially expressed features (down in first condition)"

Please remember that, when using NOISeq, the probability of differential expression is not equivalent to
1 — pvalue. We recommend for ¢ to use values around 0.8. If NOISeq-sim has been used because no replicates
are available, then it is preferable to use a higher threshold such as ¢ = 0.9. However, when using NOISeqBIO,
the probability of differential expression would be equivalent to 1 — FDR, where FDR can be considered as an
adjusted p-value. Hence, in this case, it would be more convenient to use ¢ = 0.95.

5.2.3 Plots on differential expression results

Expression plot

Once differential expression has been computed, it is interesting to plot the average expression values of each
condition and highlight the features declared as differentially expressed. It can be done with the DE.plot.

To plot the summary of the expression values in both conditions as in Fig. 14, please write the following code
(many graphical parameters can be adjusted, see the function help). Note that by giving ¢ = 0.9, differentially
expressed features considering this threshold will be highlighted in red:

> DE.plot(mynoiseq, q = 0.9, graphic = "expr", log.scale = TRUE)
[1] "888 differentially expressed features"

MD plot

Instead of plotting the expression values, it is also interesting to plot the log-fold change (M) and the absolute
value of the difference in expression between conditions (D) as in Fig. 15. This is an example of the code to get
such a plot (D values are displayed in log-scale) from NOISeq output (it is analogous for NOISeqBIO ouput).

> DE.plot(mynoiseq, q = 0.8, graphic = "MD")

[1] "1614 differentially expressed features"

22

100 1000

Liver_mean

I I I
10 100 1000

Kidney_mean

Figure 14: Summary plot of the expression values for both conditions (black), where differentially expressed
genes are highlighted (red).

D
100 1000 10000
| |

10

Figure 15: Summary plot for (M,D) values (black) and the differentially expressed genes (red).

Manhattan plot
The Manhattan plot can be used to display the expression of the genes across the chromosomes. The expres-
sion for both conditions under comparison is shown in the plot. The users may choose either plotting all the

23

chromosomes or only some of them, and also if the chromosomes are depicted consecutively (useful for prokary-
ote organisms) or separately (one per line). If a ¢ cutoff is provided, then differentially expressed features are
highlighted in a different color. The following code shows how to draw the Manhattan plot from the output
object returned by NOISeq or NOISegBIO. In this case, using Marioni’s data, the expression (log-transformed) is
represented for two chromosomes (see Fig. 16). Note that the chromosomes will be depicted in the same order
that are given to “chromosomes" parameter.

Gene expression is represented in gray. Lines above 0 correspond to the first condition under comparison
(kidney) and lines below 0 are for the second condition (liver). Genes up-regulated in the first condition are
highlighted in red, while genes up-regulated in the second condition are highlighted in green. The blue lines on
the horizontal axis (Y=0) correspond to the annotated genes. X scale shows the location in the chromosome.

> DE.plot(mynoiseq, chromosomes = c(1, 2), log.scale = TRUE, join = FALSE,
+ q = 0.8, graphic = "chrom")

[1] "REMEMBER. You are plotting these chromosomes and in this order:"
(1] 1 2

[1] "1289 differentially expressed features (up in first condition)"
[1] "325 differentially expressed features (down in first condition)"

10

, Kidney_mean

o HH | M | Ul | 0] |l HH I \‘

T T T T T T T T T T
1 3e+07 5e+07 8e+07 1le+08 1.4e+08 1.6e+08 1.9e+08 2.2e+08 247179970

10
1

Kidney_mean

N
. \‘IH |‘ | |

-5

-10
L

T T T T T T T T T T
1 3e+07 5e+07 8e+07 1e+08 1.3e+08 1.6e+08 1.9e+08 2.2e+08 242464654

Figure 16: Manhattan plot for chromosomes 1 and 2

It is advisable, in this kind of plots, to save the figure in a file, for instance, a pdf file (as in the following
code), in order to get a better visualization with the zoom.

pdf ("manhattan.pdf", width = 12, height = 50)

DE.plot(mynoiseq, chromosomes = c(1,2), log.scale = TRUE,
join = FALSE, q = 0.8)

dev.off ()

Distribution of differentially expressed features per chromosomes or biotypes

This function creates a figure with two plots if both chromosomes and biotypes information is provided.
Otherwise, only a plot is depicted with either the chromosomes or biotypes (if information of any of them
is available). The ¢ cutoff must be provided. Both plots are analogous. The chromosomes plot shows the
percentage of features in each chromosome, the proportion of them that are differentially expressed (DEG)
and the percentage of differentially expressed features in each chromosome. Users may choose plotting all the
chromosomes or only some of them. The chromosomes are depicted according to the number of features they
contain (from the greatest to the lowest). The plot for biotypes can be described similarly. The only difference is
that this plot has a left axis scale for the most abundant biotypes and a right axis scale for the rest of biotypes,
which are separated by a green vertical line.

The following code shows how to draw the figure from the output object returned by N0ISeq for the Marioni’s
example data.

> DE.plot(mynoiseq, chromosomes = NULL, q = 0.8, graphic = "distr")

24

DEG distribution across chromosomes DEG distribution across biotypes

—_ |
40 %Chrom in genome _ | %Biotype in genome | o«
%DEG in Chrom 80 | %DEG in Biotype N
M %Chrom in DEG : M %Biotype in DEG
|
|
! -
60 — [} ~
|
|
|
0 %]
g g !
2 2 !
8 8 a0 ! -
8 8 : -
|
[}
|
|
|
20 N -G
A
1 bV
A
l” W
7V
I 1
1
A
o - A 7 L o

9

protein_coding
pseudogene
SnRNA
misc_RNA
snoRNA
antisense
IG_J_gene
IG_V_gene
IG_C_gene
non_codin

processed_transcript
olymorphic_pseudogene

Figure 17: Distribution of DEG across chromosomes and biotypes for Marioni’s example dataset.

[1] "1614 differentially expressed features"

6 Setup

This vignette was built on:

> sessionInfo()

R version 4.5.0 Patched (2025-04-21 r88169)
Platform: x86_64-apple-darwin20
Running under: macOS Monterey 12.7.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/1ib/1libRlapack.dylib; LAPACK vers:

locale:
[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] splines stats graphics grDevices utils datasets methods base

other attached packages:

[1] NOISeq_2.53.0 Matrix_1.7-3 Biobase_2.69.0 BiocGenerics_0.55.0
[6] generics_0.1.3

25

loaded via a namespace (and not attached):

[1] compiler_4.5.0 tools_4.5.0 grid_4.5.0 lattice_0.22-7
References
[1] S. Tarazona, F. Garcia-Alcalde, J. Dopazo, A. Ferrer, and A. Conesa. Differential expression in RNA-seq: A

2]

3]

4]

5]

(6]

7]

8]

matter of depth. Genome Research, 21: 2213 - 2223, 2011.

S. Tarazona, P. Furi6-Tari, D. Turra, A. Di Pietro, M.J. Nueda, A. Ferrer, and A. Conesa. Data quality
aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Research,
43(21):e140, 2015.

J.C. Marioni, C.E. Mason, S.M. Mane, M. Stephens, and Y. Gilad. RNA-seq: an assessment of technical
reproducibility and comparison with gene expression arrays. Genome Research, 18: 1509 - 517, 2008.

A. Mortazavi, B.A. Williams, K. McCue, L. Schaeffer, and B. Wold. Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nature Methods, 5: 621 - 628, 2008.

J.H. Bullard, E. Purdom, K.D. Hansen, and S. Dudoit. Evaluation of statistical methods for normalization
and differential expression in mRNA-Seq experiments. BMC bioinformatics, 11(1):94, 2010.

M.D. Robinson, and A. Oshlack. A scaling normalization method for differential expression analysis of RNA-
Seq data. Genome Biology, 11: R25, 2010.

M. Nueda, A. Conesa, and A. Ferrer. ARSyN: a method for the identification and removal of systematic noise
in multifactorial time-course microarray experiments. Biostatistics, 13(3):553-566, 2012.

B. Efron, R. Tibshirani, J.D. Storey, V. Tusher. Empirical Bayes Analysis of a Microarray Experiment.
Journal of the American Statistical Association, 2001.

26

