
biomvRCNS : Copy Number study and Segmentation for multivariate
biological data.

Yang Du∗

July 16, 2014

Abstract

With high throughput experiments like tiling array and NGS, researchers are looking for continuous homoge-
neous segments or signal peaks, which would represent chromatin states, methylation ratio, transcripts or genome
regions of deletion and amplification. While in a normal experimental set-up, these profiles would be generated
for multiple samples or conditions with replicates. In the package biomvRCNS , a Hidden Semi Markov Model
and one homogeneous segmentation model are implemented and tailored to handle multiple genomic profiles,
with the aim of assisting in transcripts detection using high throughput technology like RNA-seq or tiling array,
and copy number analysis using aCGH or targeted sequencing.

1 Introduction

To begin with biomvRCNS , load the package and read the manual page.

> library(biomvRCNS)

In the package, 3 main functions are provided for the batch processing of multiple chromosome regions across
samples: biomvRhsmm, a hidden semi Markov model (HSMM) [Du et al., 2014]; biomvRseg, a maximum likelihood
based homogeneous segmentation model; and a third biomvRmgmr, custom batch function using max-gap-min-run
algorithm. In the following sections we will illustrate their functionalities using example data. Currently the package
does not deal with data correction, so input should be normalized by reference or paired sample and corrected for
factor of interest before passing down.

2 Example of array CGH data set of Coriell cell lines

Extracted from packge DNACopy [Olshen et al., 2004], the coriell data contains two aCGH studies (GM05296
and GM13330) of Corriel cell lines taken from Snijders et al. [2001]. In particular, with 2271 mapped features in
total across 22 autosomes and chromosome X.

All three main functions accept common data matrix plus positional information as input or a GRanges object
with data matrix stored in the meta columns. To get started, we first build a GRanges object from data.frame.

> data('coriell', package='biomvRCNS')
> head(coriell, n=3)

∗email: yang.du@uni-rostock.de

1

Clone Chromosome Position Coriell.05296 Coriell.13330
1 GS1-232B23 1 1 0.000359 0.207470
2 RP11-82d16 1 469 0.008824 0.063076
3 RP11-62m23 1 2242 -0.000890 0.123881

> xgr<-GRanges(seqnames=coriell[,2],
+ IRanges(start=coriell[,3], width=1, names=coriell[,1]))
> values(xgr)<-DataFrame(coriell[,4:5], row.names=NULL)
> xgr<-sort(xgr)
> head(xgr, n=3)

GRanges object with 3 ranges and 2 metadata columns:
seqnames ranges strand | Coriell.05296 Coriell.13330

<Rle> <IRanges> <Rle> | <numeric> <numeric>
GS1-232B23 1 1 * | 0.000359 0.207470
RP11-82d16 1 469 * | 0.008824 0.063076
RP11-62m23 1 2242 * | -0.000890 0.123881

seqinfo: 23 sequences from an unspecified genome; no seqlengths

Please be sure that the data is sorted with respect to their positions before feeding to the models.

2.1 Genomic segmentation with Hidden-semi Markov model

First we use the hidden-semi Markov model with the batch function biomvRhsmm, which will sequentially process
each chromosome identified by the seqnames (using dummy name when no GRanges supplied in x or xRange), thus
for non-continuous regions on the same chromosome user should give different seqnames to each part of the data.
Within this package, there is one argument grp, for all main batch functions, which is used to assign data columns
to groups according to the experimental design, say technical replicates or biological replicates. Sample columns
within the same group could be treated simultaneously in the modelling process as well as iteratively. 1 In this
example, the two profiles are considered independent and not similar, thus been given different values in the grp
vector. Additionally there is a built-in automatic grouping method, given a valid clustering method cluster.m and
grp set to NULL. By default, all data columns are assumed to be from the same group.

> rhsmm<-biomvRhsmm(x=xgr, maxbp=1E5, J=3, soj.type='gamma',
+ com.emis=T, emis.type='norm', prior.m='quantile', grp=c(1,2))

> show(rhsmm)

Object is of class: 'biomvRCNS'
List of parameters used in the model:
J, maxk, maxbp, maxgap, soj.type, emis.type, q.alpha, r.var, iterative, cMethod, maxit, tol,
grp, cluster.m, avg.m, prior.m, trim, na.rm, soj.par, emis.par

The segmented ranges:
GRanges object with 102 ranges and 3 metadata columns:

seqnames ranges strand | SAMPLE STATE AVG
<Rle> <IRanges> <Rle> | <Rle> <Rle> <Rle>

[1] 1 1-108746 * | Coriell.05296 2 0.009122
1Simultaneous treatment within group is currently available for emis.type equals ’mvnorm’ or ’mvt’ in biomvRhsmm, poolGrp=TRUE

in biomvRmgmr and twoStep=FALSE in biomvRseg.

2

[2] 1 112204-218166 * | Coriell.05296 2 0.013827
[3] 1 110293 * | Coriell.05296 1 -0.07913
[4] 1 220439-240001 * | Coriell.05296 1 -0.0083905
[5] 1 1-36207 * | Coriell.13330 3 0.087401
...

[98] 22 20553-33001 * | Coriell.13330 3 0.130433
[99] 23 1-155001 * | Coriell.05296 3 0.676184

[100] 23 1-98906 * | Coriell.13330 2 -0.05351
[101] 23 125572-155001 * | Coriell.13330 2 -0.01226
[102] 23 103194-122966 * | Coriell.13330 1 -0.10148

seqinfo: 23 sequences from an unspecified genome; no seqlengths

In the above run, we limit the model complexity by setting the maxbp to 1E5, which will restrict the maximum
sojourn time to maxbp. J is the number of states in the HSMM model, this argument can be given explicitly or
estimated from prior information provided in xAnno. Argument soj.type defines the type of sojourn distribution;
with Gamma distributed sojourn, the neighbouring position will tend to have the same state, and transit to other
states if far apart. In this way the sojourn distribution fully incorporate the positional information into the
probabilistic framework.

Argument emis.type controls the distribution of emission probability, in this case the log2 ratio of aCGH data is
considered to follow Normal distribution. The emission density could be estimated using all data or only data on the
respective region or chromosome (identified by unique seqnames), controlling via com.emis. In this case, the ratios
cross chromosomes are directly comparable, thus com.emis was set to true. The prior of the emission parameters
could be controlled by supplying q.alpha and r.var with prior.m=’quantile’ , or automatically determined through
a clustering process with prior.m=’cluster’ .

The function will then call C codes and estimate the most likely state sequence, with either cMethod=’F-B’
or cMethod=’Viterbi’ . The F-B method (default) uses a forward-backward algorithm described in Guédon [2003],
which gives a smooth state sequence, whereas the Viterbi algorithm with cMethod=’Viterbi’ will use the state profile
estimated by the forward-backward algorithm and rebuild the most likely state sequence. The parameter maxit
controls the maximum iteration of the EM algorithm. When assessing aCGH data, the quantile method should be
able to give a good estimation of the emission desity priors, one can also adjust q.alpha and r.var for better control
over the mean-variance relationships in extreme states. SInce we are not training a prediction model, but trying to
derive the most likely state sequence, one iteration of the EM procedure is sufficient.

The function returns an object of class biomvRCNS , in which the res slot is a GRanges object containing the
summary of each estimated segments. There are three meta columns: column SAMPLE gives the column name of
which sample this segment belongs to; column STATE, the estimated state for each segment, the lower state number
represents state with lower mean value, thus in this example, a state of 1 could represent region of deletion and 3
for region of duplication, whereas state 2 could be considered copy neutral; column AVG, gives the segment average
value, which could take the form of (trimmed) mean or median controlled by avg.m. The original input is also kept
and returned in slot x with the estimated most likely state assignment and associated probability.

A plot method has been implemented for biomvRCNS object using package Gviz , by default the plot method
tries to output graphics to multiple EPS/PDF files for each chromosome region and sample. Multiple samples
could also be overlaid on the same image, by passing sampleInOne=TRUE in the plot method. Here we set
tofile=FALSEALSE to output graphics to the current device, and only show resulting graphics for chromosome 11
from sample Coriell.05296.

> obj<-biomvRGviz(exprgr=xgr[seqnames(xgr)=='11', 'Coriell.05296'],
+ seggr=rhsmm@res[mcols(rhsmm@res)[,'SAMPLE']=='Coriell.05296'], tofile=FALSE)

3

11:0−146000@Coriell.05296

−0.8

−0.6

−0.4

−0.2

0

0.2

C
or

ie
ll.

05
29

6

2 1 2unknown

0 kb

50 kb

100 kb

−4.55 kb4.55 kb

9.09 kb

13.64 kb

18.18 kb

22.73 kb

27.27 kb

31.82 kb

36.36 kb

40.91 kb

45.45 kb54.55 kb

59.09 kb

63.64 kb

68.18 kb

72.73 kb

77.27 kb

81.82 kb

86.36 kb

90.91 kb

95.45 kb104.55 kb

109.09 kb

113.64 kb

118.18 kb

122.73 kb

127.27 kb

131.82 kb

5' 3'
3' 5'

2.2 Using other methods provided in the package

In this section, we use the other two batch functions to process the coriell data. First we use biomvRseg, in
which a similar segmentation method like in the package tillingArray [Huber et al., 2006] is implemented and
extended to handle Poisson and Negative binomial distributed data. The function shares several argument with
biomvRhsmm, like maxbp and grp. The maxseg gives the maximum number of segment per chromosome region, while
the optimal number of segment per chromosome region is determined internally by assessing the likelihood with
optional penalty terms, by default penalty=’BIC’ is used. Another option is to use modified Bayes information
criterion penalty=’mBIC’ [Zhang and Siegmund, 2007], as in the CBS algorithm used in DNAcopy . The function
proceed in the following manner: assuming within each group sample columns exhibit similar patterns, and thus be
processed simultaneously in the first step. By maximizing the likelihood the optimal number of segments is selected
for each group. And in a second step if twoStep=TRUE or merging is necessary, the candidate segments produced
in the first step are merged with respect to each sample, thus forcing sample columns in the same group to have a
more unified segmentation result yet keeping it possible to have sample specific pattern.

> rseg<-biomvRseg(x=xgr, maxbp=4E4, maxseg=10, family='norm', grp=c(1,2))

> head(rseg@res)

4

GRanges object with 6 ranges and 3 metadata columns:
seqnames ranges strand | SAMPLE AVG STATE

<Rle> <IRanges> <Rle> | <character> <numeric> <character>
[1] 1 1-35001 * | Coriell.05296 0.0045915 LOW
[2] 1 35106-36207 * | Coriell.05296 0.1335200 HIGH
[3] 1 37117-85833 * | Coriell.05296 0.0129660 HIGH
[4] 1 87215-89493 * | Coriell.05296 -0.1010400 LOW
[5] 1 91001-132148 * | Coriell.05296 0.0066565 LOW
[6] 1 132171-136942 * | Coriell.05296 0.1421530 HIGH

seqinfo: 23 sequences from an unspecified genome; no seqlengths

After the example run, the function returns a biomvRCNS object, containing similar information as the previous
biomvRhsmm run, except that the STATE column now only have a binary state value of either "HIGH" or "LOW",
which is simply graded as ’HIGH’ if the segment average is higher than the grand average of the whole region, and
’LOW’ otherwise.

It is also possible to use the simple max-gap-min-run algorithm to segment aCGH profiles, by calling biomvRmgmr.
But due to the binary nature of the algorithm, one have to run twice in order to get both extremely high and low
segments, then combine the resulting GRanges manually.

> rmgmrh<-biomvRmgmr(xgr, q=0.9, high=T, maxgap=1000, minrun=2500, grp=c(1,2))
> rmgmrl<-biomvRmgmr(xgr, q=0.1, high=F, maxgap=1000, minrun=2500, grp=c(1,2))
> res<-c(rmgmrh@res, rmgmrl@res)

3 Example of transcript detection with RNA-seq data from ENCODE

The data contains gene expressions and transcript annotations in the region of the human TP53 gene (chr17:7,560,001-
7,610,000 from the Human February 2009 (GRCh37/hg19) genome assembly), which is part of the long RNA-seq
data generated by ENCODE [Consortium, 2004] /Cold Spring Harbor Lab, containing 2 cell types (GM12878 and
K562) with 2 replicates each. The libraries were sequenced on the Illumina GAIIx platform as paired-ends for 76
or 101 cycles for each read. The average depth of sequencing was 200 million reads (100 million paired-ends). The
data were mapped against hg19 using Spliced Transcript Alignment and Reconstruction (STAR).

To generate local read counts, alignment files were pulled from UCSC (http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/) using package Rsamtools. And subsequently reads were
counted in each non-overlapping unit sized window for the region (chr17:7,560,001-7,610,000). In the pre-compiled
data encodeTP53 , a window size of 25bp was used with the chunk of code below.

> winsize<-25
> cgr<-GRanges("chr17", strand='-',
+ IRanges(start=seq(7560001, 7610000, winsize), width =winsize))
> bf<-system.file("extdata", "encodeFiles.txt", package = "biomvRCNS")
> bamfiles<-read.table(bf, header=T, stringsAsFactors=F)
> library(Rsamtools)
> which<-GRanges("chr17", IRanges(7560001, 7610000))
> param<-ScanBamParam(which=which, what=scanBamWhat())
> for(i in seq_len(nrow(bamfiles))){
+ frd<-scanBam(bamfiles[i,1], param=param)
+ frdgr<-GRanges("chr17", strand=frd[[1]]$strand,
+ IRanges(start=frd[[1]]$pos , end = frd[[1]]$pos+frd[[1]]$qwidth-1))
+ mcols(cgr)<-DataFrame(mcols(cgr), DOC=countOverlaps(cgr, frdgr))
+ }

5

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/

Alternatively one can also operate on base pair resolution, in which case a Rle object should be preferred to store
the count data for lower memory footprint and better efficiency. Also to speed things up, one could set useMC=T to
enable parallel processing of multiple seqnames, the number of parallel process could be set by options(mc.cores=n).

> cgr<-GRanges("chr17", strand='-',
+ IRanges(seq(7560001, 7610000), width=1))
> bf<-system.file("extdata", "encodeFiles.txt", package = "biomvRCNS")
> bamfiles<-read.table(bf, header=T, stringsAsFactors=F)
> library(Rsamtools)
> which<-GRanges("chr17", IRanges(7560001, 7610000))
> param<-ScanBamParam(which=which, flag=scanBamFlag(isMinusStrand=TRUE))
> for(i in seq_len(nrow(bamfiles))){
+ cod<-coverage(BamFile(bamfiles[i,1]), param=param)[['chr17']][7560001:7610000]
+ mcols(cgr)<-DataFrame(mcols(cgr), DOC=cod)
+ }

The pre-compiled data encodeTP53 also includes the regional annotation of TP53 RNAs isoforms, gmgr, which
were derived from the ENCODE Gene Annotations (GENCODE), http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeGencodeV4/wgEncodeGencodeManualV4.gtf.gz) , and subset to only isoforms of TP53
gene and neighboring genes in the region. The annotation object gmgr could be rebuilt with the following lines
using the included file under extdata. The additional file ’gmodTP53.gff’ can also be directly imported as GRanges
using rtracklayer .

> af<-system.file("extdata", "gmodTP53.gff", package = "biomvRCNS")
> gtfsub<-read.table(af, fill=T, stringsAsFactors=F)
> gmgr<-GRanges("chr17", IRanges(start=gtfsub[, 4], end=gtfsub[, 5],
+ names=gtfsub[, 13]), strand=gtfsub[, 7], TYPE=gtfsub[, 3])

We first load the encodeTP53 data, poll the read counts for each cell type and add 1 to the base count to increase
stability.

> data(encodeTP53)
> cgr<-encodeTP53$cgr
> gmgr<-encodeTP53$gmgr
> mcols(cgr)<-DataFrame(
+ Gm12878=1+rowSums(as.matrix(mcols(cgr)[,1:2])),
+ K562=1+rowSums(as.matrix(mcols(cgr)[,3:4])))

For count data from sequencing, the emis.type could be set to either ’pois’ or ’nbinom’, though ’pois’ is
preferred for sharp boundary detection. For the sojourn settings, instead of using the uninformative flat prior, we
here use estimates from other data source as a prior. We load the TxDb.Hsapiens.UCSC.hg19.knownGene known
gene database, and pass the TxDb object to xAnno. Then internally sojourn parameters and state number J will
be estimated from xAnno by calling function sojournAnno. When given a TxDb object to xAnno, state number
would be set to 3 and each represents ’intergenic’, ’intron’ and ’exon’. One can also supply a named list object with
initial values for parameters of distribution specified by soj.type. For emission, since the highly dispersed nature of
count data, we set the prior for emission mean to be more extreme, with q.alpha=0.01 .

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)
> txdb<-TxDb.Hsapiens.UCSC.hg19.knownGene
> rhsmm<-biomvRhsmm(x=cgr, xAnno=txdb, maxbp=1E3, soj.type='gamma',
+ emis.type='pois', prior.m='quantile', q.alpha=0.01)

6

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV4/wgEncodeGencodeManualV4.gtf.gz)
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV4/wgEncodeGencodeManualV4.gtf.gz)

As in the ENCODE guide [Consortium, 2011], the study identified the p53 isoform observed in K562 cells has
a longer 3’UTR than the isoform seen in the GM12878 cell line. So here we plot our model estimates and consider
the third state, namely ’exon’, to represent detected transcripts. And the HSMM model clearly picked up the extra
transcripts of the K562 cell line at the 3’UTR.

> rhsmm@res[mcols(rhsmm@res)[,'STATE']=='exon']

GRanges object with 52 ranges and 3 metadata columns:
seqnames ranges strand | SAMPLE STATE AVG

<Rle> <IRanges> <Rle> | <Rle> <Rle> <Rle>
[1] chr17 7571801-7572125 - | Gm12878 exon 312
[2] chr17 7572251-7572350 - | Gm12878 exon 96
[3] chr17 7572426-7572550 - | Gm12878 exon 61
[4] chr17 7572601-7572625 - | Gm12878 exon 60
[5] chr17 7572851-7573050 - | Gm12878 exon 127
...

[48] chr17 7588951-7589400 - | K562 exon 20
[49] chr17 7589426-7589525 - | K562 exon 6
[50] chr17 7589676-7589825 - | K562 exon 9
[51] chr17 7590701-7590800 - | K562 exon 14.5
[52] chr17 7592026-7592050 - | K562 exon 6

seqinfo: 1 sequence from an unspecified genome; no seqlengths

> g<-mcols(rhsmm@res)[,'STATE']=='exon' & mcols(rhsmm@res)[,'SAMPLE']=='Gm12878'
> obj<-biomvRGviz(exprgr=cgr[,'Gm12878'], gmgr=gmgr,
+ seggr=rhsmm@res[g], plotstrand='-', regionID='TP53', tofile=FALSE)

7

TP53@chr17:7560000−7610000@Gm12878
7.57 mb

7.58 mb

7.59 mb

7.6 mb

7.563 mb

7.567 mb 7.573 mb

7.577 mb 7.583 mb

7.587 mb 7.593 mb

7.597 mb 7.603 mb

7.607 mb

5' 3'
3' 5'

ENST00000269305

ENST00000455263

ENST00000420246

ENST00000445888

ENST00000509690

ENST00000514944

ENST00000508793

ENST00000503591

exonexonexonexonexonexonexonexonexonexonexonexonexonexon exonexonunknown

100

200

300

400

500

> k<-mcols(rhsmm@res)[,'STATE']=='exon' & mcols(rhsmm@res)[,'SAMPLE']=='K562'
> obj<-biomvRGviz(exprgr=cgr[,'K562'], gmgr=gmgr,
+ seggr=rhsmm@res[k], plotstrand='-', regionID='TP53', tofile=FALSE)

8

TP53@chr17:7560000−7610000@K562
7.57 mb

7.58 mb

7.59 mb

7.6 mb

7.563 mb

7.567 mb 7.573 mb

7.577 mb 7.583 mb

7.587 mb 7.593 mb

7.597 mb 7.603 mb

7.607 mb

5' 3'
3' 5'

ENST00000269305

ENST00000455263

ENST00000420246

ENST00000445888

ENST00000509690

ENST00000514944

ENST00000508793

ENST00000503591

K
56

2

exon exonexonexonexonexonexonexonexonunknown

10

20

30

40

50

Now we can locate those novel detected fragments in K562 cell line comparing to the annotation and those
detected in Gm12878 cell line. One can then follow up those findings either by gene structure prediction using local
nucleotides composition or by experimental validation.

> nK2gm<-queryHits(findOverlaps(rhsmm@res[k], gmgr))
> nK2G<-queryHits(findOverlaps(rhsmm@res[k], rhsmm@res[g]))
> rhsmm@res[k][setdiff(seq_len(sum(k)), unique(c(nK2G, nK2gm)))]

GRanges object with 19 ranges and 3 metadata columns:
seqnames ranges strand | SAMPLE STATE AVG

<Rle> <IRanges> <Rle> | <Rle> <Rle> <Rle>
[1] chr17 7569151-7569225 - | K562 exon 9
[2] chr17 7569651-7569925 - | K562 exon 15
[3] chr17 7570301-7570550 - | K562 exon 16
[4] chr17 7570751-7570850 - | K562 exon 10
[5] chr17 7570901-7571000 - | K562 exon 8
...

[15] chr17 7587201-7587225 - | K562 exon 8
[16] chr17 7588826-7588850 - | K562 exon 6
[17] chr17 7589426-7589525 - | K562 exon 6
[18] chr17 7589676-7589825 - | K562 exon 9

9

[19] chr17 7592026-7592050 - | K562 exon 6

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The other 2 batch functions could also be similarly applied here.

> rseg<-biomvRseg(x=cgr, maxbp=1E3, maxseg=20, family='pois')
> rmgmr<-biomvRmgmr(x=cgr, q=0.99, maxgap=50, minrun=100)

4 Example of differentially methylated region (DMR) detection

As an example, we include a toy dataset extracted from BiSeq [Hebestreit et al., 2013], which is a small subset
of a published study [Schoofs et al., 2013], comprising intermediate differential methylation results prior to DMR
detection. We first load the variosm data, the data contains a GRanges object variosm with two meta columns:
’meth.diff’, methylation difference between the two sample groups; ’p.val’, significance level from the Wald test.
What we will show here latter could be applied on other pipelines as well, using similar data input.

> data(variosm)
> head(variosm, n=3)

GRanges object with 3 ranges and 2 metadata columns:
seqnames ranges strand | meth.diff p.val

<Rle> <IRanges> <Rle> | <numeric> <numeric>
[1] chr1 872335 * | 0.0889115 0.001131765
[2] chr1 872369 * | 0.0970307 0.000767803
[3] chr1 872370 * | 0.0965589 0.000834745

seqinfo: 2 sequences from an unspecified genome; no seqlengths

In the BiSeq work-flow, they use an approach similar to the max-gap-min-run algorithm to define the DMR
boundaries, by prior filtering and comparing the differential test statistics with a user specified significance level
in the candidate regions. The positional information of methylation sites is taking into account by locating and
testing highly correlated cluster regions in the filtering process.

We now use the biomvRhsmm model to detect DMR, since there are mainly two types of measurement associated
with differential methylation studies like we have here, one is the difference in the methylation ratio and the other one
is the significance level from differential test. The methylation difference gives information about the directionality
of the change as well as the size, and the significance level gives the confidence in claiming differential events.

So here we utilize both information for the DMR detection. We implicitly ask the model to give 3 states, since J
is default to 3, in which case the three states may each represent hypomethylated regions, undefined null regions, and
hypermethylated regions respectively when modelling meth.diff; While modelling significance level these states
would represent highly confident regions, lowly confident regions or / and null results. For both scenarios, we are
more interested in extreme states where we have consistent differences and low P-values. However the distribution of
p.val and meth.diff are both highly asymmetric, we thus enable the cluster mode for emission prior initialization
by setting prior.m=’cluster’ . And due to the non-uniformly located CpG sites, one may split inter-spreading long
segments with parameter maxgap=100.

> rhsmm<-biomvRhsmm(x=variosm, maxbp=100, prior.m='cluster', maxgap=100)

10

> hiDiffgr<-rhsmm@res[mcols(rhsmm@res)[,'STATE']!=2
+ & mcols(rhsmm@res)[,'SAMPLE']=='meth.diff']
> dirNo<-mcols(hiDiffgr)[,'STATE']=='1' & mcols(hiDiffgr)[,'AVG']>0 |
+ mcols(hiDiffgr)[,'STATE']=='3' & mcols(hiDiffgr)[,'AVG']<0
> hiDiffgr<- hiDiffgr[!dirNo]
> loPgr<-rhsmm@res[mcols(rhsmm@res)[,'STATE']==1
+ & mcols(rhsmm@res)[,'SAMPLE']=='p.val']
> DMRs<-reduce(intersect(hiDiffgr, loPgr), min.gapwidth=100)
> idx<-findOverlaps(variosm, DMRs, type='within')
> mcols(DMRs)<-DataFrame(cbind(TYPE='DMR', aggregate(as.data.frame(mcols(variosm[queryHits(idx)])),
+ by=list(DMR=subjectHits(idx)), FUN=median)[,-1]))
> names(DMRs)<-paste0('DMRs', seq_along(DMRs))
> DMRs

GRanges object with 5 ranges and 3 metadata columns:
seqnames ranges strand | TYPE meth.diff p.val

<Rle> <IRanges> <Rle> | <character> <numeric> <numeric>
DMRs1 chr1 875227-875470 * | DMR 0.3194742 6.67719e-06
DMRs2 chr1 876807-876958 * | DMR -0.0610822 6.50033e-02
DMRs3 chr1 877684-877738 * | DMR -0.0612301 2.84464e-02
DMRs4 chr2 46126-46280 * | DMR 0.4100852 1.81853e-07
DMRs5 chr2 46389-46558 * | DMR 0.4482317 1.89082e-06

seqinfo: 2 sequences from an unspecified genome; no seqlengths

After the model fitting, by intersecting regions with extreme meth.diff and regions with low p.val, we can
locate those detected DMRs, returned with their average meth.diff and p.val. Comparing to the regions detected
in the BiSeq vignette, the two sets of regions are largely similar except for two regions: (chr1:872335,872386),
which in our case the meth.diff has not been considered high enough due to the highly asymmetric distribution of
‘meth.diff’; another region (chr2:46915,46937) resides in the tail of chromosome 2 with low density of methylation
sites, which has been sorted to the intermediate states due to the lack of support from both the emission level
and the sojourn time. However it is worth mentioning that due to the filtering applied in their work-flow, they
built wider regions out of a smaller set of more significant sites; while in our case, the regions are more refined and
especially we identified two hypomethylated regions.

> plot(rhsmm, gmgr=DMRs, tofile=FALSE)

11

chr1:872000−878000@meth.diff&p.val

0

0.2

0.4

0.6

0.8

meth.diff p.val

m
et

h.
di

ff

2 3 2 1 2 12unknown

p.
va

l

1 1 23 2 1 23232 12312unknown

 DMRs1 DMRs2 DMRs3

873 kb

874 kb

875 kb

876 kb

877 kb872.33 kb

872.67 kb 873.33 kb

873.67 kb 874.33 kb

874.67 kb 875.33 kb

875.67 kb 876.33 kb

876.67 kb 877.33 kb

5' 3'
3' 5'

Other than the iterative fitting of individual models for the two profiles, it is also possible to take advantage of
the multivariate nature of the data. Since in this case we are interested in locating regions show high difference in
the methylation level, while also achieving high significance in the statistical test. To better capture the covariance
structure of possible combination of the two profiles, we use the multivariate Normal for the emission and raise the
number of state to a relatively high number, for example 6. Also we enable the ’com.emis’ mode to learn from the
whole data rather than individual chromosome. After the model fitting, we inspect the estimated segment profile
produced by the plot method. We could see that segments labelled with state ’6’ could be consider as the most
significant DMRs, which show high meth.diff and with very low p.val, while state ’5’ could be considered as
potential candidates for DMRs with relatively lower confidence. After the model fitting, one can also access the
fitted emission and sojourn parameters. One can see from the emission parameter and also from the figure, the
state 1 could be potentially linked to hypomethylated regions, where the methylation difference average is under 0
yet with relatively low p.val.

> rhsmm<-biomvRhsmm(x=variosm, J=6, maxbp=100, emis.type='mvnorm',
+ prior.m='cluster', maxgap=100, com.emis=T)

> plot(rhsmm, tofile=FALSE)

12

chr1:872000−878000@meth.diff&p.val

0

0.2

0.4

0.6

0.8

meth.diff p.val

m
et

h.
di

ff

515 6 2432 132124324323 512412unknown

p.
va

l

515 6 2432 132124324323 512412unknown

873 kb

874 kb

875 kb

876 kb

877 kb872.33 kb

872.67 kb 873.33 kb

873.67 kb 874.33 kb

874.67 kb 875.33 kb

875.67 kb 876.33 kb

876.67 kb 877.33 kb

5' 3'
3' 5'

> DMRs<-reduce(rhsmm@res[mcols(rhsmm@res)[,'STATE']=='6'], min.gapwidth=100)
> idx<-findOverlaps(variosm, DMRs, type='within')
> mcols(DMRs)<-DataFrame(cbind(TYPE='DMR', aggregate(as.data.frame(mcols(variosm[queryHits(idx)])),
+ by=list(DMR=subjectHits(idx)), FUN=median)[,-1], stringsAsFactors=F))
> names(DMRs)<-paste0('DMRs', seq_along(DMRs))
> DMRs

GRanges object with 2 ranges and 3 metadata columns:
seqnames ranges strand | TYPE meth.diff p.val

<Rle> <IRanges> <Rle> | <character> <numeric> <numeric>
DMRs1 chr1 875227-875470 * | DMR 0.319474 6.67719e-06
DMRs2 chr2 46126-46718 * | DMR 0.355363 3.96040e-05

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> cDMRs<-reduce(rhsmm@res[mcols(rhsmm@res)[,'STATE']=='5'], min.gapwidth=100)
> idx<-findOverlaps(variosm, cDMRs, type='within')
> mcols(cDMRs)<-DataFrame(cbind(TYPE='cDMR', aggregate(as.data.frame(mcols(variosm[queryHits(idx)])),
+ by=list(cDMRs=subjectHits(idx)), FUN=median)[,-1], stringsAsFactors=F))
> names(cDMRs)<-paste0('cDMRs', seq_along(cDMRs))
> cDMRs

13

GRanges object with 6 ranges and 3 metadata columns:
seqnames ranges strand | TYPE meth.diff p.val

<Rle> <IRanges> <Rle> | <character> <numeric> <numeric>
cDMRs1 chr1 872335-872469 * | cDMR 0.0606475 0.00594267
cDMRs2 chr1 872616 * | cDMR 0.1546660 0.05900094
cDMRs3 chr1 877684-877716 * | cDMR -0.0618569 0.02755560
cDMRs4 chr2 45843-46113 * | cDMR 0.1378729 0.05590267
cDMRs5 chr2 46725-46752 * | cDMR 0.1233461 0.02766854
cDMRs6 chr2 46915-46937 * | cDMR 0.0994440 0.01484596

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> rhsmm@param$emis.par['chr1',][[1]]

$var
$var[[1]]

meth.diff p.val
meth.diff 0.0014900896 -0.0001065013
p.val -0.0001065013 0.0071132700

$var[[2]]
meth.diff p.val

meth.diff 8.660973e-05 -0.0003151823
p.val -3.151823e-04 0.0044724795

$var[[3]]
meth.diff p.val

meth.diff 2.935401e-05 9.750245e-05
p.val 9.750245e-05 2.324940e-03

$var[[4]]
meth.diff p.val

meth.diff 3.064254e-06 -1.686886e-05
p.val -1.686886e-05 1.055942e-03

$var[[5]]
meth.diff p.val

meth.diff 6.968485e-03 8.083678e-05
p.val 8.083678e-05 1.153695e-03

$var[[6]]
meth.diff p.val

meth.diff 0.0070819026 -2.259439e-04
p.val -0.0002259439 6.130125e-05

$mu
$mu[[1]]

meth.diff p.val
-0.02066372 0.23425762

$mu[[2]]
meth.diff p.val

-0.007890973 0.631601677

$mu[[3]]

14

meth.diff p.val
-0.007865075 0.760032309

$mu[[4]]
meth.diff p.val

0.001136895 0.942443888

$mu[[5]]
meth.diff p.val

0.04309182 0.02937310

$mu[[6]]
meth.diff p.val

3.21372e-01 6.59215e-05

> rhsmm@param$soj.par['chr1',][[1]]

$scale
[1] 7.094867 12.880280 22.528988 19.636070 442.751509 82.985092

$shape
[1] 5.98484325 2.75899525 1.45863754 2.16831102 0.01084226 0.07593698

> plot(rhsmm, gmgr=c(DMRs, cDMRs), tofile=FALSE)

15

chr1:872000−878000@meth.diff&p.val

0

0.2

0.4

0.6

0.8

meth.diff p.val

m
et

h.
di

ff

515 6 2432 132124324323 512412unknown

p.
va

l

515 6 2432 132124324323 512412unknown

DMRs1cDMRs1

cDMRs2

cDMRs3

873 kb

874 kb

875 kb

876 kb

877 kb872.33 kb

872.67 kb 873.33 kb

873.67 kb 874.33 kb

874.67 kb 875.33 kb

875.67 kb 876.33 kb

876.67 kb 877.33 kb

5' 3'
3' 5'

5 More

To be continued ...

6 Session information

> sessionInfo()

R version 4.5.0 Patched (2025-04-21 r88169)
Platform: x86_64-apple-darwin20
Running under: macOS Monterey 12.7.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.1

locale:

16

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] parallel grid stats4 stats graphics grDevices utils datasets methods

[10] base

other attached packages:
[1] cluster_2.1.8.1 TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[3] GenomicFeatures_1.61.0 AnnotationDbi_1.71.0
[5] Biobase_2.69.0 biomvRCNS_1.49.0
[7] Gviz_1.53.0 GenomicRanges_1.61.0
[9] GenomeInfoDb_1.45.0 IRanges_2.43.0

[11] S4Vectors_0.47.0 BiocGenerics_0.55.0
[13] generics_0.1.3

loaded via a namespace (and not attached):
[1] DBI_1.2.3 bitops_1.0-9 deldir_2.0-4
[4] gridExtra_2.3 httr2_1.1.2 biomaRt_2.65.0
[7] rlang_1.1.6 magrittr_2.0.3 biovizBase_1.57.0

[10] matrixStats_1.5.0 compiler_4.5.0 RSQLite_2.3.9
[13] png_0.1-8 vctrs_0.6.5 ProtGenerics_1.41.0
[16] stringr_1.5.1 pkgconfig_2.0.3 crayon_1.5.3
[19] fastmap_1.2.0 backports_1.5.0 dbplyr_2.5.0
[22] XVector_0.49.0 Rsamtools_2.25.0 rmarkdown_2.29
[25] UCSC.utils_1.5.0 bit_4.6.0 xfun_0.52
[28] cachem_1.1.0 jsonlite_2.0.0 progress_1.2.3
[31] blob_1.2.4 DelayedArray_0.35.1 BiocParallel_1.43.0
[34] jpeg_0.1-11 prettyunits_1.2.0 VariantAnnotation_1.55.0
[37] R6_2.6.1 stringi_1.8.7 RColorBrewer_1.1-3
[40] rtracklayer_1.69.0 rpart_4.1.24 Rcpp_1.0.14
[43] SummarizedExperiment_1.39.0 knitr_1.50 base64enc_0.1-3
[46] Matrix_1.7-3 nnet_7.3-20 tidyselect_1.2.1
[49] rstudioapi_0.17.1 dichromat_2.0-0.1 abind_1.4-8
[52] yaml_2.3.10 codetools_0.2-20 curl_6.2.2
[55] lattice_0.22-7 tibble_3.2.1 KEGGREST_1.49.0
[58] evaluate_1.0.3 foreign_0.8-90 BiocFileCache_2.99.0
[61] xml2_1.3.8 Biostrings_2.77.0 pillar_1.10.2
[64] filelock_1.0.3 MatrixGenerics_1.21.0 checkmate_2.3.2
[67] RCurl_1.98-1.17 ensembldb_2.33.0 hms_1.1.3
[70] ggplot2_3.5.2 munsell_0.5.1 scales_1.3.0
[73] glue_1.8.0 lazyeval_0.2.2 Hmisc_5.2-3
[76] tools_4.5.0 interp_1.1-6 BiocIO_1.19.0
[79] data.table_1.17.0 BSgenome_1.77.0 GenomicAlignments_1.45.0
[82] mvtnorm_1.3-3 XML_3.99-0.18 latticeExtra_0.6-30
[85] colorspace_2.1-1 GenomeInfoDbData_1.2.14 htmlTable_2.4.3
[88] restfulr_0.0.15 Formula_1.2-5 cli_3.6.5
[91] rappdirs_0.3.3 S4Arrays_1.9.0 dplyr_1.1.4
[94] AnnotationFilter_1.33.0 gtable_0.3.6 digest_0.6.37
[97] SparseArray_1.9.0 rjson_0.2.23 htmlwidgets_1.6.4

[100] memoise_2.0.1 htmltools_0.5.8.1 lifecycle_1.0.4
[103] httr_1.4.7 bit64_4.6.0-1

17

References
The ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA elements) project. Science, 306(5696):

636–640, 2004.

The ENCODE Project Consortium. A User’s Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biol,
9(4):e1001046, 04 2011. doi: 10.1371/journal.pbio.1001046. URL http://dx.doi.org/10.1371%2Fjournal.
pbio.1001046.

Yang Du, Eduard Murani, Siriluck Ponsuksili, and Klaus Wimmers. biomvRhsmm: Genomic segmentation with
hidden semi-Markov model. BioMed Research International, 2014, 2014. ISSN 2314-6133. doi: 10.1155/2014/
910390.

Yann Guédon. Estimating Hidden Semi-Markov Chains from Discrete Sequences. Journal of Computational and
Graphical Statistics, 12(3):604–639, 2003. ISSN 10618600. doi: 10.2307/1391041. URL http://dx.doi.org/10.
2307/1391041.

Katja Hebestreit, Martin Dugas, and Hans-Ulrich Klein. Detection of Significantly Differentially Methylated Regions
in Targeted Bisulfite Sequencing Data. Bioinformatics, 2013. doi: 10.1093/bioinformatics/btt263. URL http:
//bioinformatics.oxfordjournals.org/content/early/2013/05/08/bioinformatics.btt263.abstract.

Wolfgang Huber, Joern Toedling, and Lars M. Steinmetz. Transcript mapping with high-density oligonucleotide
tiling arrays. Bioinformatics, 22:1963–1970, 2006.

Adam B. Olshen, E. S. Venkatraman, Robert Lucito, and Michael Wigler. Circular binary segmentation for the
analysis of array-based DNA copy number data. Biostatistics, 5(4):557–572, 2004. doi: 10.1093/biostatistics/
kxh008. URL http://biostatistics.oxfordjournals.org/content/5/4/557.abstract.

Till Schoofs, Christian Rohde, Katja Hebestreit, Hans-Ulrich Klein, Stefanie Göllner, Isabell Schulze, Mads Lerdrup,
Nikolaj Dietrich, Shuchi Agrawal-Singh, Anika Witten, Monika Stoll, Eva Lengfelder, Wolf-Karsten Hofmann,
Peter Schlenke, Thomas Büchner, Klaus Hansen, Wolfgang E. Berdel, Frank Rosenbauer, Martin Dugas, and
Carsten Müller-Tidow. DNA methylation changes are a late event in acute promyelocytic leukemia and coincide
with loss of transcription factor binding. Blood, 121(1):178–187, 2013. doi: 10.1182/blood-2012-08-448860. URL
http://bloodjournal.hematologylibrary.org/content/121/1/178.abstract.

Antoine M Snijders, Norma Nowak, Richard Segraves, Stephanie Blackwood, Nils Brown, Jeffrey Conroy, Greg
Hamilton, Anna Katherine Hindle, Bing Huey, Karen Kimura, et al. Assembly of microarrays for genome-wide
measurement of DNA copy number. Nature genetics, 29:263–264, 2001.

Nancy R. Zhang and David O. Siegmund. A Modified Bayes Information Criterion with Applications to the
Analysis of Comparative Genomic Hybridization Data. Biometrics, 63(1):22–32, 2007. ISSN 1541-0420. doi:
10.1111/j.1541-0420.2006.00662.x. URL http://dx.doi.org/10.1111/j.1541-0420.2006.00662.x.

18

http://dx.doi.org/10.1371%2Fjournal.pbio.1001046
http://dx.doi.org/10.1371%2Fjournal.pbio.1001046
http://dx.doi.org/10.2307/1391041
http://dx.doi.org/10.2307/1391041
http://bioinformatics.oxfordjournals.org/content/early/2013/05/08/bioinformatics.btt263.abstract
http://bioinformatics.oxfordjournals.org/content/early/2013/05/08/bioinformatics.btt263.abstract
http://biostatistics.oxfordjournals.org/content/5/4/557.abstract
http://bloodjournal.hematologylibrary.org/content/121/1/178.abstract
http://dx.doi.org/10.1111/j.1541-0420.2006.00662.x

	Introduction
	Example of array CGH data set of Coriell cell lines
	Genomic segmentation with Hidden-semi Markov model
	Using other methods provided in the package

	Example of transcript detection with RNA-seq data from ENCODE
	Example of differentially methylated region (DMR) detection
	More
	Session information

