
Likelihood calculations for vsn

Wolfgang Huber

April 23, 2025

Contents

1 Introduction . 1

2 Setup and Notation . 1

3 Likelihood for Incremental Normalization 2

4 Profile Likelihood . 3

5 Summary . 5

1 Introduction
This vignette contains the computations that underlie the numerical code of vsn. If you are
a new user and looking for an introduction on how to use vsn, please refer to the vignette
Robust calibration and variance stabilization with vsn, which is provided separately.

2 Setup and Notation
Consider the model

arsinh (f(bi) · yki + ai) = µk + εki 1

where µk, for k = 1, . . . , n, and ai, bi, for i = 1, . . . , d are real-valued parameters, f is a
function R → R (see below), and εki are i.i.d. Normal with mean 0 and variance σ2. yki
are the data. In applications to µarray data, k indexes the features and i the arrays and/or
colour channels.

Examples for f are f(b) = b and f(b) = eb. The former is the most obvious choice; in that
case we will usually need to require bi > 0. The choice f(b) = eb assures that the factor in
front of yki is positive for all b ∈ R, and as it turns out, simplifies some of the computations.

In the following calculations, I will also use the notation

Y ≡ Y (y, a, b) = f(b) · y + a 2

h ≡ h(y, a, b) = arsinh (f(b) · y + a) . 3

Likelihood calculations for vsn

The probability of the data (yki)k=1...n, i=1...d lying in a certain volume element of y-space
(hyperrectangle with sides [yαki, y

β
ki]) is

P =

n∏
k=1

d∏
i=1

yβ
ki∫

yα
ki

dyki pNormal(h(yki), µk, σ
2)

dh

dy
(yki), 4

where µk is the expectation value for feature k and σ2 the variance.

With
pNormal(x, µ, σ

2) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
5

the likelihood is

L =

(
1√
2πσ2

)nd n∏
k=1

d∏
i=1

exp

(
− (h(yki)− µk)

2

2σ2

)
· dh
dy

(yki) . 6

For the following, I will need the derivatives
∂Y

∂a
= 1 7

∂Y

∂b
= y · f ′(b) 8

dh

dy
=

f(b)√
1 + (f(b)y + a)2

=
f(b)√
1 + Y 2

, 9

∂h

∂a
=

1√
1 + Y 2

, 10

∂h

∂b
=

y√
1 + Y 2

· f ′(b). 11

Note that for f(b) = b, we have f ′(b) = 1, and for f(b) = eb, f ′(b) = f(b) = eb.

3 Likelihood for Incremental Normalization
Here, incremental normalization means that the model parameters µ1, . . . , µn and σ2 are
already known from a fit to a previous set of µarrays, i. e. a set of reference arrays. See Sec-
tion 4 for the profile likelihood approach that is used if µ1, . . . , µn and σ2 are not known and
need to be estimated from the same data. Versions ≥ 2.0 of the vsn package implement both
of these approaches; in versions 1.X only the profile likelihood approach was implemented,
and it was described in the initial publication [1].

First, let us note that the likelihood 6 is simply a product of independent terms for different i.
We can optimize the parameters (ai, bi) separately for each i = 1, . . . , d. From the likelihood
6 we get the i-th negative log-likelihood

− log(L) =

d∑
i=1

−LLi 12

−LLi =
n

2
log
(
2πσ2

)
+

n∑
k=1

(
(h(yki)− µk)

2

2σ2
+ log

√
1 + Y 2

ki

f(bi)

)
13

=
n

2
log
(
2πσ2

)
− n log f(bi) +

n∑
k=1

(
(h(yki)− µk)

2

2σ2
+

1

2
log
(
1 + Y 2

ki

))
14

2

Likelihood calculations for vsn

This is what we want to optimize as a function of ai and bi. The optimizer benefits from
the derivatives. The derivative with respect to ai is

∂

∂ai
(−LLi) =

n∑
k=1

(
h(yki)− µk

σ2
+

Yki√
1 + Y 2

ki

)
· 1√

1 + Y 2
ki

=

n∑
k=1

(rki
σ2

+AkiYki

)
Aki 15

and with respect to bi

∂

∂bi
(−LLi) = −n

f ′(bi)

f(bi)
+

n∑
k=1

(
h(yki)− µk

σ2
+

Yki√
1 + Y 2

ki

)
· yki√

1 + Y 2
ki

· f ′(bi)

= −n
f ′(bi)

f(bi)
+ f ′(bi)

n∑
k=1

(rki
σ2

+AkiYki

)
Akiyki 16

Here, I have introduced the following shorthand notation for the “intermediate results” terms

rki = h(yki)− µk 17

Aki =
1√

1 + Y 2
ki

. 18

Variables for these intermediate values are also used in the C code to organise the computa-
tions of the gradient.

4 Profile Likelihood
If µ1, . . . , µn and σ2 are not already known, we can plug in their maximum likelihood esti-
mates, obtained from optimizing LL for µ1, . . . , µn and σ2:

µ̂k =
1

d

d∑
j=1

h(ykj) 19

σ̂2 =
1

nd

n∑
k=1

d∑
j=1

(h(ykj)− µ̂k)
2 20

into the negative log-likelihood. The result is called the negative profile log-likelihood

−PLL =
nd

2
log
(
2πσ̂2

)
+

nd

2
− n

d∑
j=1

log f(bj) +
1

2

n∑
k=1

d∑
j=1

log
√

1 + Y 2
kj . 21

Note that this no longer decomposes into a sum of terms for each j that are independent of
each other – the terms for different j are coupled through Equations 19 and 20 . We need
the following derivatives.

∂σ̂2

∂ai
=

2

nd

n∑
k=1

rki
∂h(yki)

∂ai

=
2

nd

n∑
k=1

rkiAki 22

∂σ̂2

∂bi
=

2

nd
· f ′(bi)

n∑
k=1

rkiAkiyki 23

3

Likelihood calculations for vsn

So, finally

∂

∂ai
(−PLL) =

nd

2σ̂2
· ∂σ̂

2

∂ai
+

n∑
k=1

A2
kiYki

=

n∑
k=1

(rki
σ̂2

+AkiYki

)
Aki 24

∂

∂bi
(−PLL) = −n

f ′(bi)

f(bi)
+ f ′(bi)

n∑
k=1

(rki
σ̂2

+AkiYki

)
Akiyki 25

4

Likelihood calculations for vsn

5 Summary
Likelihoods, from Equations 12 and 21 :

−LLi =
n

2
log
(
2πσ2

)
︸ ︷︷ ︸

scale

+

n∑
k=1

(h(yki)− µk)
2

2σ2︸ ︷︷ ︸
residuals

−n log f(bi) +
1

2

n∑
k=1

log(1 + Y 2
ki)︸ ︷︷ ︸

jacobian

26

−PLL =
nd

2
log
(
2πσ̂2

)
︸ ︷︷ ︸

scale

+
nd

2︸︷︷︸
residuals

+

d∑
i=1

(
−n log f(bi) +

1

2

n∑
k=1

log(1 + Y 2
ki)

)
︸ ︷︷ ︸

jacobian

27

The computations in the C code are organised into steps for computing the terms “scale”,
“residuals” and “jacobian”.

Partial derivatives with respect to ai, from Equations 15 and 24 :

∂

∂ai
(−LLi) =

n∑
k=1

(rki
σ2

+AkiYki

)
Aki 28

∂

∂ai
(−PLL) =

n∑
k=1

(rki
σ̂2

+AkiYki

)
Aki 29

Partial derivatives with respect to bi, from Equations 16 and 25 :

∂

∂bi
(−LLi) = −n

f ′(bi)

f(bi)
+ f ′(bi)

n∑
k=1

(rki
σ2

+AkiYki

)
Akiyki 30

∂

∂bi
(−PLL) = −n

f ′(bi)

f(bi)
+ f ′(bi)

n∑
k=1

(rki
σ̂2

+AkiYki

)
Akiyki. 31

Note that the terms have many similarities – this is used in the implementation in the C
code.

References
[1] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Variance

stablization applied to microarray data calibration and to quantification of differential
expression. Bioinformatics, 18:S96–S104, 2002.

[2] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Parameter
estimation for the calibration and variance stabilization of microarray data. Statistical
Applications in Genetics and Molecular Biology, Vol. 2: No. 1, Article 3, 2003.
http://www.bepress.com/sagmb/vol2/iss1/art3

5

	1 Introduction
	2 Setup and Notation
	3 Likelihood for Incremental Normalization
	4 Profile Likelihood
	5 Summary

