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1 Introduction

GOAL: The BUS package allows the computation of two types of similarities (correlation [Sokal, 2003] and
mutual information [Cover, 2001]) for two di�erent goals: (i) identi�cation of the similarity among the activity of
molecules sampled across di�erent experiments (we name this option Unsupervised, U), (ii) identi�cation of the
similarity between such molecules and other types of information (clinical, anagraphical, etc, we name this option
supervised, S).
Unsupervised Option. The computation applies to data in tabular form (MxN) where rows represents

di�erent molecules (M), columns represents experiments or samples (N) and the content of the tables' cells the
abundance of the molecule in the sample. Microarray experiments are the data of choice for this application,
but the method can be applied to any data in the appropriate format (miRNA arrays, RNA-seq data, etc.). The
results are in the form of an MxM adjacency matrix, where each cell represents the association computed among
the corresponding molecules. This matrix has associated also a p-value matrix and a corrected p-value matrix (see
below for details). Based on the cuto� selected, the adjacency matrix can be trimmed and lead to a predicted
network of statistically signi�cant interactions (pred.network). This output can be used as-is to represent a
gene association network ([Margolin, 2004, Basso, 2005]), or can be further elaborated to cluster genes based on
a shared degree of similarity (hence the Unsupervised label). Mutual information (from now on MI) is computed
using the minet package [Meyer, 2008], all the options can be found in the corresponding vignette. Here argument
net.trim decides which function (mrnet/clr/aracne) in MINET package is used to give the similarity based on
mutual information matrix. Correlation is computed using the R built-in cor function.
Supervised Option. For the S option a second dataset is necessary, a TxN table, where T represents the

number of external traits of interest. The result is an association MxT table where each cell indicates the association
between the molecule and the external trait. Mutual information is computed according to the empirical method
proposed in MINET package. It is implemented with a external c function. This matrix has associated also a
p-value matrix and a corrected p-value matrix (see below for details). As this can be used to associate samples to
clinical classes we call this option Supervised (this type of approach was used in [Diehn, 2008]).
Statistical Signi�cance. The package o�ers the possibility to evaluate the statistical signi�cance of the

computed similarity measures in two steps, a summary of the options is given in Table 1.

Option
p-value

single multiple
ρ MI MI

S
Exact beta distribution

permutations (3 options)
U permutations

Table 1. Summary of the available options for statistical validation in BUS. ρ indicates correlation.

First, it allows the computation of the "single" p-value, i.e. the p-value relevant for the assessment of the
statistical signi�cance of the similarity of a given gene as if it was the only one tested.

For correlation this relies on the R built-in cor.test and it then computes the exact p-value.
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For MI it is obtained from permutations and this method estimates the extreme p-values (close to 0) by �tting

a beta distribution, whose analytical expression is obtained by the estimate of 2 shape parameters (α̂ and β̂) using
the method of the moments.

Second, for the p-value of MI, correction for multiple hypothesis testing is computed based on permutations. 3
types of corrections are o�ered:

� S analysis option method.permut = 1 correction for multiple traits tested

� S analysis option method.permut = 2 correction for multiple genes tested

� S analysis option method.permut = 3 correction for both traits and genes

Missing Data Treatment. Data are pre-processed to cope with missing information (both in the MxN and
in the TxN table) using (smooth) bootstrapping [Silverman, 1987].

The main function BUS has arguments for:

� the type of analysis (supervised/unsupervised)

� the distance metric (correlation/MI)

� the correction types for statistical signi�cance on multiple hypothesis testing based on permutations (genes,
traits or both)

Expected computation times. In the unsupervised case, the anticipated time for a 50*12 matrix (gene
expression data) is 30 seconds when running on an ordinary personal computer (with 1G memory). While in the
supervised case, with 50*12 gene expression data and trait data involved, it is 2 minute when correction of both
genes and traits is considered.

The functions' dependencies scheme of the BUS package is illustrated below.

Figure 1. functions scheme

Functions Description

BUS: A wrapper function to compute (i) the similarity matrix (using correlation/MI as metric) and the single
p-value matrix (each element is the p-value under the null hypothesis that the related row gene and column gene
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have no interaction), corrected p-values matrix (di�erent levels of dependency are considered) and the predicted
network matrix (predicted gene network, this output is e�ective for option U)

gene.similarity: Function for the computation of the adjacency matrix in the Unsupervised option (using
correlation/MI as metric)

gene.trait.similarity: Function for the computation of the similarity matrix in the Supervised option (using
correlation/MI as metric)

gene.pvalue: Function for the computation of the p-value matrix for the Unsupervised option. Single p-value
(each element is the p-value under the null hypothesis that the related row gene and column gene have no inter-
action) is computed thanks to: (i) for MI the distribution identi�ed by the P permutation values identi�ed for
each gene, with extreme p-values computed �tting a beta distribution; for correlation using the exact distribution
provided by the built-in R cor function (single.perm.p.value). Corrected p-value is computed thanks to the distri-
bution identi�ed by the p permutation values across all genes (multi.perm.p.value). When correlation is used as
matric, only exact p-value is output.

gene.trait.pvalue: Function for the computation of the p-value matrix for the Supervised option. Single
p-value (each element is the p-value under the null hypothesis that the related row gene and column trait have no
interaction) is computed thanks to: (i) for MI the distribution identi�ed by the P permutation values identi�ed for
each gene, with extreme p-values computed �tting a beta distribution; for correlation using the exact distribution
provided by the built-in R cor function (single.perm.p.value). Corrected p-value is computed thanks to the
distribution identi�ed by the P permutation values across all genes (multi.perm.p.value); (ii) the distribution
identi�ed by the P permutation values across all traits; (iii) the distribution identi�ed by the P permutation values
across all genes and traits.

pred.network: Function to predict the network from the selected corrected p-value matrix, only for the Unsu-
pervised option.

2 BUS Usage

> library(BUS)

> library(minet)

> data(copasi)

> mat=as.matrix(copasi)[1:5,]

> rownames(mat)<-paste("G",1:nrow(mat), sep="")

> BUS(EXP=mat,measure="MI",n.replica=400,net.trim="aracne",thresh=0.05,nflag=1)

$similarity

G1 G2 G3 G4 G5

G1 1.0000000 0.0000000 0.0000000 1.0000000 0.8972577

G2 0.0000000 1.0000000 0.0000000 0.7253354 0.0000000

G3 0.0000000 0.0000000 1.0000000 0.0000000 0.9093271

G4 1.0000000 0.7253354 0.0000000 1.0000000 0.0000000

G5 0.8972577 0.0000000 0.9093271 0.0000000 1.0000000

$single.perm.p.value

G1 G2 G3 G4 G5

G1 0.0000 0.4525 0.4750 0.0000 0.1250

G2 0.4525 0.0000 0.4325 0.1625 0.4250

G3 0.4750 0.4325 0.0000 0.4550 0.0825

G4 0.0000 0.1625 0.4550 0.0000 0.4550

G5 0.1250 0.4250 0.0825 0.4550 0.0000

$multi.perm.p.value

G1 G2 G3 G4 G5

G1 0.00000000 0.39650960 0.4049844 0.00000000 0.01876955

G2 0.39650960 0.00000000 0.3926593 0.05441228 0.38908206
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G3 0.40498442 0.39265928 0.0000000 0.40435835 0.01620690

G4 0.00000000 0.05441228 0.4043584 0.00000000 0.40083362

G5 0.01876955 0.38908206 0.0162069 0.40083362 0.00000000

$net.pred.permut

G1 G2 G3 G4 G5

G1 1.0000000 0 0.0000000 1 0.8972577

G2 0.0000000 1 0.0000000 0 0.0000000

G3 0.0000000 0 1.0000000 0 0.9093271

G4 1.0000000 0 0.0000000 1 0.0000000

G5 0.8972577 0 0.9093271 0 1.0000000

The arguments to the BUS function here are

� EXP, a matrix for gene expression data.

� measure, metric used to calculate similarity. There are two choices, MI and corr. We use MI here, applying
the MINET package to output the similarity matrix with option of aracne.

� method.permut, a �ag to indicate which method is used to correct permutation p-values. Here a default
value (2) is used.

� n.replica, number of permutations: default value is 400, for optimal precision in p-value computation.

� net.trim, method chosen to trim the network. Here aracne method is applied, where the least signi�cant
edge in each triplet is removed.

� threshold, threshold, according to which signi�cant association between genes are selected to construct
the predicted network. This option is acutually used in function pred.network for predicted network from
p-value matrix.

� nflag, a �ag for the type of analysis. If Supervised nflag=2, if Unsupervised nflag=1. Here an Unsupervised
option is considered.

The copasi dataset is taken from Copasi2 (Complex Pathway Simulator), a software for simulation and analysis
of biochemical networks. The system generates random arti�cial gene networks according to well-de�ned topo-
logical and kinetic properties. These are used to run in silico experiments simulating real laboratory micro-array
experiments. Noise with controlled properties is added to the simulation results several times emulating mea-
surement replicates, before expression ratios are calculated. This series consists of 150 arti�cial gene networks.
Each network consists of 100 genes with a total of 200 gene interactions (on average each gene has 2 modulators).
All networks are composed of genes with similar kinetics, the only di�erence between networks is how the gene
interactions are organized (i.e. which genes induce and repress which other genes). The networks belong to three
major groups according to their topologies: RND stands for randomized network, SF for scale-free(many edges
among few nodes) and SW for small world (edges exist between adjacent nodes). The data given in the package
is an RND data. Actually, only �rst of �ve rows in the gene expression data is used to calculate to save the space
here.

Explain the results:

� similarity: the matrix for mutual information.

� single.perm.p.value: the single p-value matrix, i.e. the p-value matrix obtained by the simple purmutation
method. We can see it is a 5*5 matrix here as we only use data for 5 genes.

� multi.perm.p.value: the corrected permutation p-value matrix, i.e. the p-value matrix obtained via cor-
rected permutation method.

� net.pred.permut: the network predicted based on the corrected permutation p-value matrix. This network
is based on multi-hypothesis-corrected p-values.
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This is an Unsupervised case. We could see that a lower values in single.perm.p.value/multi.perm.p.value

or a higher values in net.pred.permut indicate a strong link between the row and column genes. The value 0 in
the p-value matrix or 1 in network matrix respectively infers a strong link.

> data(tumors.mRNA)

> exp<- as.matrix(tumors.mRNA)[11:15,]

> rownames(exp)<-rownames(tumors.mRNA)[11:15]

> data(tumors.miRNA)

> trait<- as.matrix(tumors.miRNA)[11:15,]

> rownames(trait)<-rownames(tumors.miRNA)[11:15]

> BUS(EXP=exp,trait=trait,measure="MI",nflag=2)

$similarity

hsa-mir-132 hsa-mir-133a hsa-mir-135a

200017_at 0.0000000 0.0000000 0.2334554

200018_at 0.0000000 0.2334554 0.2334554

200022_at 1.0000000 0.0000000 0.2334554

200023_s_at 0.2334554 0.0000000 0.0000000

200024_at 1.0000000 0.2334554 0.2334554

hsa-mir-135b hsa-mir-139

200017_at 0.05920619 0.2334554

200018_at 0.05920619 0.0000000

200022_at 0.05920619 0.0000000

200023_s_at 0.05920619 0.0000000

200024_at 0.55920619 0.0000000

$single.perm.p.value

hsa-mir-132 hsa-mir-133a hsa-mir-135a

200017_at 0.5900 0.5775 0.1525

200018_at 0.5525 0.3375 0.1550

200022_at 0.0000 0.5550 0.3425

200023_s_at 0.1750 0.5525 0.5350

200024_at 0.0000 0.1525 0.3100

hsa-mir-135b hsa-mir-139

200017_at 0.3675 0.1875

200018_at 0.3275 0.5700

200022_at 0.3725 0.5925

200023_s_at 0.3950 0.5225

200024_at 0.0475 0.5700

$multi.perm.p.value

hsa-mir-132 hsa-mir-133a hsa-mir-135a

200017_at 0.5820 0.5560 0.1515

200018_at 0.5820 0.3415 0.1515

200022_at 0.0000 0.5560 0.3245

200023_s_at 0.1755 0.5560 0.5670

200024_at 0.0000 0.1530 0.3245

hsa-mir-135b hsa-mir-139

200017_at 0.37 0.1545

200018_at 0.37 0.5720

200022_at 0.37 0.5720

200023_s_at 0.37 0.5720

200024_at 0.05 0.5720

Here is a Supervised case, we use the tumor dataset from [Liu, 2007], the mRNA data as gene expression data
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and miRNA data as trait data. Gene expression data were obtained by microarray from human brain tumors,
while miRNA data were obtained by RT-PCR. 12 brain tumors at di�erent levels are analyzed for both mRNA
and miRNA levels to study the correlation of any mRNA-miRNA pairs. Outputs are similar like that in the
unsupervised case except the predicted network.
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