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Abstract

The first part of this tutorial exemplifies how an integrated network
analysis can be conducted using the BioNet package. Here we will inte-
grate gene expression data from different lymphoma subtypes and clinical
survival data with a comprehensive protein-protein interaction (PPI) net-
work based on HPRD. This is shown first in a quick start and later in a
more detailed analysis. The second part will focus on the integration of
gene expression data from Affymetrix single-channel microarrays with the
human PPI network.

1 Quick Start

The quick start section gives a short overview of the essential BioNet methods
and their application. A detailed analysis of the same data set of diffuse large
B-cell lymphomas is presented in section 3 .

The major aim of the presented integrated network analysis is to identify mod-
ules, which are differentially expressed between two different lymphoma sub-
types (ABC and GCB) and simultaneously are risk associated (measured by
the survival analysis).

First of all, we load the BioNet package and the required data sets, containing a
human protein-protein interaction network and p-values derived from differential
expression and survival analysis.

> library(BioNet)
> library(DLBCL)

> data(dataLym)

> data(interactome)

Then we need to aggregate these two p-values into one p-value.

> pvals <- cbind(t = datalym$t.pval, s = dataLym$s.pval)
> rownames (pvals) <- dataLym$label
> pval <- aggrPvals(pvals, order = 2, plot = FALSE)

Next a subnetwork of the complete network is derived, containing all the pro-
teins which are represented by probesets on the microarray. And self-loops are
removed.

> subnet <- subNetwork(datalym$label, interactome)
> subnet <- rmSelfLoops (subnet)
> subnet



A graphNEL graph with undirected edges
Number of Nodes = 2559
Number of Edges = 7788

To score each node of the network we fit a Beta-uniform mixture model (BUM)
[9] to the p-value distribution and subsequently use the parameters of the model
for the scoring function [5]. A false-discovery rate (FDR) of 0.001 is chosen.

> fb <- fitBumModel(pval, plot = FALSE)
> scores <- scoreNodes(subnet, fb, fdr = 0.001)

Here we use a fast heuristic approach to calculate an approximation to the
optimal scoring subnetwork. An optimal solution can be calculated using the
heinz algorithm [5] requiring a commercial CPLEX license, see section 3.4 and
6 for installation.

> module <- runFastHeinz(subnet, scores)
> 1logFC <- dataLym$diff
> names (1ogFC) <- datalLym$label

Both 2D and 3D module visualization procedures are available in BioNet. For
a 3D visualization, see section 3.4. Alternatively, the network could be easily
exported in Cytoscape format, see section 5.4.

> plotModule(module, scores = scores, diff.expr = logFC)
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Figure 1: Resultant functional module. Differential expression between ABC
and GCB B-cell lymphoma is coloured in red and green, where green shows an
upregulation in ACB and red an upregulation in GBC. The shape of the nodes
depicts the score: rectangles indicate a negative score, circles a positive score.



2 Heuristics to Calculate High-scoring Subnet-
works

To calculate high-scoring subnetworks without an available CPLEX license a
heuristics is included in the BioNet package. The following depicts a short
outline of the algorithm:

1. In the first step all positive connected nodes are aggregated into meta-
nodes.

2. By defining an edge score based on the node’s scores that are on the
endpoints of an edge, the node scores are transfered to the edges.

3. On these edge scores a minimum spanning tree (MST) is calculated.

4. All paths between positive meta-nodes are calculated based on the MST
to obtain the negative nodes between the positives.

5. Upon these negative nodes again a MST is calculated from which the
path with the highest score, regarding node scores of negative nodes and
the positive meta-nodes they connect, gives the resulting approximated
module.

To validate the performance of the heuristic we simulate artificial signal mod-
ules. For this we use the induced subnetwork of the HPRD-network comprising
the genes present on the hgul33a Affymetrix chip. Within this network we
set artificial signal modules of biological relevant sizes of 30 and 150 nodes,
respectively; the remaining genes are considered as background noise. For all
considered genes we simulate microarray data and analyze subsequently the sim-
ulated gene expression data analogously to the real expression analysis. We scan
a large range of FDRs between 0 and 0.8 and evaluate the obtained solutions
in terms of recall (true positive rate) and precision (ratio of true positives to
all positively classified), for the optimal solution, our heuristic and a heuristic
implemented in the Cytoscape plugin jActiveModules Ideker et al. [8]. The re-
sults of the heuristic implemented in the BioNet package are clearly closer to the
optimal solutions, than the results of the other heuristical approach. Especially
for a strong signal with 150 genes, our heuristic yields a good approximation of
the maximum-scoring subnetwork.
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Figure 2: Performance validation. Plot of the recall vs. precision of a batch
of solutions calculated for a wide range of FDRs (colouring scheme) with three
replications each, for the exact solution and two heuristics. For the algorithm by
Ideker et al. [8] we display the 6 convex hulls (triangles) of solutions (solutions 5
and 6 partially overlap) obtained by applying it recursively to five independent
simulations. We evaluated two different signal component sizes (30, left plot and
150, right plot) with the same procedure. Clearly, the presented exact approach
(solid line) captures the signal with high precision and recall over a relatively
large range of FDRs. The results of the BioNet heuristic algorithm (dotted line)
are much closer to the optimal solution over the entire range of FDRs compared
to the jActiveModules heuristic; in particular, in the important region of high
recall and precision.

3 Diffuse Large B-cell Lymphoma Study

Integrated network analysis not only focuses on the structure (topology) of
the underlying graph but integrates external information in terms of node and
edge attributes. Here we exemplify how an integrative network analysis can be
performed using a protein-protein interaction network, microarray and clinical
(survival) data, for details see Dittrich et al. [5].

3.1 The data

First, we load the microarray data and interactome data which is available as
expression set and a graph object from the BioNet package. The graph objects
can be either in the graphNEL format, which is used in the package graph and
RBGL [1, 2, 6] or in the igraph format from the package igraph [4].

> library(BioNet)
> library(DLBCL)

> data(exprLym)

> data(interactome)

Here we use the published gene expression data set from diffuse large B-cell
lymphomas (DLBCL) [11]. In particular, gene expression data from 112 tumors
with the germinal center B-like phenotype (GCB DLBCL) and from 82 tumors
with the activated B-like phenotype (ABC DLBCL) are included in this study.
The expression data has been precompiled in an ExpressionSet structure.

> exprLym

ExpressionSet (storageMode: lockedEnvironment)
assayData: 3583 features, 194 samples

element names: exprs
protocolData: none

phenoData
sampleNames: Lym432 Lym431 ... Lym274 (194 total)
varLabels: Subgroup IPI ... Status (5 total)

varMetadata: labelDescription
featureData: none



experimentData: use 'experimentData(object)’
Annotation:

For the network data we use a data set of literature-curated human protein-
protein interactions obtained from HPRD [10]. Altogether the entire network
used here comprises 9386 nodes and 36504 edges.

> interactome

A graphNEL graph with undirected edges
Number of Nodes = 9386
Number of Edges = 36504

From this we derive a Lymphochip-specific interactome network as the vertex-
induced subgraph extracted by the subset of genes for which we have expression
data on the Lymphochip. This can easily be done, using the subNetwork com-
mand.

> network <- subNetwork(featureNames (exprLym), interactome)
> network

A graphNEL graph with undirected edges
Number of Nodes = 2559
Number of Edges = 8538

Since we want to identify modules as connected subgraphs we focus on the
largest connected component.

> network <- largestComp (network)
> network

A graphNEL graph with undirected edges
Number of Nodes = 2034
Number of Edges = 8399

So finally we derive a Lymphochip network which comprises 2034 nodes and
8399 edges.

3.2 Calculating the p-values

Differential expression In the next step we use rowttest from the pack-
age genefilter to analyse differential expression between the ABC and GCB
subtype:

> library(genefilter)
> library(impute)
> expressions <- impute.knn(exprs(exprLym))$data

Cluster size 3583 broken into 2235 1348
Cluster size 2235 broken into 1775 460
Cluster size 1775 broken into 478 1297
Done cluster 478
Done cluster 1297



Done cluster 1775
Done cluster 460
Done cluster 2235
Done cluster 1348

> t.test <- rowttests(expressions, fac = exprLym$Subgroup)

> t.test[1:10, ]

The result looks as follows:

statistic dm  p.value

MYC(4609) -3.38  -0.41 0.00
KIT(3815) 1.37  0.12 0.17
ETS2(2114) 0.51 0.04 0.61
TGFBR3(7049) -2.89  -0.43 0.00
CSK(1445) -3.61  -0.26 0.00
ISGF3G(10379) -2.94  -0.25 0.00
RELA(5970) -0.95  -0.07 0.34
TIAL1(7073) -2.03  -0.09 0.04
CCL2(6347) -0.94 -0.16 0.35
SELL(6402) 218 -0.26 0.03

Survival analysis The survival analysis implemented in the package survival
can be used to assess the risk association of each gene and calculate the as-
sociated p-values. As this will take some time, we here use the precalculated
p-values from the BioNet package.

data(dataLym)

ttest.pval <- t.test[, "p.value']
surv.pval <- datalym$s.pval

names (surv.pval) <- dataLym$label
pvals <- cbind(ttest.pval, surv.pval)

vV V. Vv Vv Vv

3.3 Calculation of the score

We have obtained two p-values for each gene, for differential expression and
survival relevance. Next we aggregate these two p-values for each gene into one
p-value of p-values using order statistics. The function aggrPvals calculates
the second order statistic of the p-values for each gene.

> pval <- aggrPvals(pvals, order = 2, plot = FALSE)

Now we can use the aggregated p-values to fit the Beta-uniform mixture model
to the distribution. The following plot shows the fitted Beta-uniform mixture
model in a histogram of the p-values.

> fb <- fitBumModel (pval, plot = FALSE)
> fb

Beta-Uniform-Mixture (BUM) model

3583 pvalues fitted



Mixture parameter (lambda): 0.537
shape parameter (a): 0.276
log-likelihood: 1651.3

> dev.new(width = 13, height = 7)
> par(mfrow = c(1, 2))

> hist(fb)

> plot(fb)

> dev.off()

null device
1
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Figure 3: Histogram of p-values, overlayed by the fitted BUM model coloured
in red and the m-upper bound displayed as a blue line. The right plot shows
a quantile-quantile plot, indicating a nice fit of the BUM model to the p-value

distribution.

The quantile-quantile plot indicates that the BUM model fits nicely to the p-
value distribution. A plot of the log-likelihood surface can be obtained with
plotLLSurface. It shows the mixture parameter A (x-axis) and the shape pa-
rameter a (y-axis) of the Beta-uniform mixture model. The circle in the plot

depicts the maximum-likelihood estimates for A and a.

> plotLLSurface(pval, fb)
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Figure 4: Log-likelihood surface plot. The range of the colours shows an in-
creased log-likelihood from red to white. Additionaly, the optimal parameters
A and a for the BUM model are highlighted.

The nodes of the network are now scored using the fitted BUM model and a
FDR of 0.001.

> scores <- scoreNodes(network = network, fb = fb,
+ fdr = 0.001)

In the next step the network with the scores and edges is written to a file and
the heinz algorithm is used to calculate the maximum-scoring subnetwork. In
order to run heinz self-loops have to be removed from the network.

> network <- rmSelfLoops (network)
> writeHeinzEdges (network = network, file = "lymphoma_edges_001",
+ use.score = FALSE)

[1] TRUE

> writeHeinzNodes (network = network, file = "lymphoma_nodes_001",
+ node.scores = scores)

[1] TRUE

3.4 Calculation of the maximum-scoring subnetwork

In the following the heinz algorithm is started using the heinz.py python
script.



This starts the integer linear programming optimization and calculates the
maximum-scoring subnetwork using CPLEX.

The command is: "heinz.py -e lymphoma edges 001.txt -n
lymphoma nodes 001.txt -N True -E False" or runHeinz on a linux machine
with CPLEX installed.

The output is precalculated in 1ymphoma_nodes_001.txt.0.hnz and
lymphoma_edges_001.txt.0.hnz in the subdirectory "extdata" of the R BioNet
library directory.

> datadir <- file.path(path.package("BioNet"), "extdata")
> dir(datadir)

[1] "ALL_cons_n.txt.0.hnz"

[2] "ALL_edges_001.txt.0.hnz"

[3] "ALL_n_resample.txt.0.hnz"

[4] "ALL_nodes_001.txt.0.hnz"

[5] "cytoscape.sif"

[6] "lymphoma_edges_001.txt.0.hnz"
[7] "lymphoma_nodes_001.txt.0.hnz"
[8] "n.weight.NA"

[9] "weight.EA"

The output is loaded as a graph and plotted with the following commands:

> module <- readHeinzGraph(node.file = file.path(datadir,
+ "lymphoma_nodes_001.txt.0.hnz"), network = network)
> diff <- t.test[, "dm'"]

> names (diff) <- rownames(t.test)

A\

plotModule (module, diff.expr = diff, scores = scores)
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Figure 5: Resultant functional module for the lymphoma data set. Differential
expression between ABC and GCB B-cell lymphoma is coloured in red and
green, where green shows an upregulation in ACB and red an upregulation in
GBC. The shape of the nodes depicts the score: rectangles indicate a negative
score, circles a positive score.

The log fold-changes are visualized by the colouring of the nodes, the shape
of the nodes depicts the score (positive=circle, negative=square). It is also
possible to visualize the module in 3D with the function plot3dModule, but for
this the rgl package, a 3D real-time rendering system, has to be installed. The
plot can be saved to pdf-file with the function save3dModule. And the resulting
module would look as following.
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Figure 6: 3D visualization of the same functional module shown in 5. Here,
only the scores are depicted by the colouring of the nodes, positives in red and
negatives in green.

The resulting subnetwork consists of 46 nodes and 50 edges. It has a cumulative
sum of the scores of 71.08 from 37 positive (coloured in red) and 9 negative nodes
(coloured in green).

> sum(scores/[nodes (module)])

[1] 71.07992

> sum(scores[nodes(module)] > 0)
[1] 37

> sum(scores[nodes(module)] < 0)
[11 9

We capture an interactome module that has been described to play a major
biological role in the GCB and ABC DLBCL subtypes. It includes for example,
the proliferation module which is more highly expressed in the ABC DLBCL
subtype [11] comprising the genes: MYC, CCNE1, CDC2, APEX1, DNTTIP2,
and PCNA. Likewise, genes IRF4, TRAF2, and BCL2, which are associated
with the potent and oncogenic NFxB pathway.

4 ALL Study

This section describes the integrated network approach applied to the analysis
of Affymetrix microrray data. In addition to the previous section, the data is
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analysed for differential expression using the package limma [13]. The resulting
module can be exported in various formats and for example displayed with
Cytoscape [12].

4.1 The data

First, we load the microarray data and the human interactome data, which is
available as a graph object from the BioNet package. The popular Acute Lym-
phoblastic Leukemia (ALL) data set [3] with 128 arrays is used as an example for
an Affymetrix single-channel microarray. This data is available in the package
ALL [7] as a normalised ExpressionSet.

library(BioNet)
library (DLBCL)
library(ALL)

data (ALL)
data(interactome)

vV V. Vv Vv Vv

The mircroarray data gives results from 128 samples of patients with T-cell
ALL or B-cell ALL using Affymetrix hgu95av2 arrays. Aim of the integrated
analysis is to capture significant genes in a functional module, all of which
are potentially involved in acute lymphoblastic leukemia and show a significant
difference in expression between the B- and T-cell samples.

> ALL

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 128 samples
element names: exprs

protocolData: none

phenoData
sampleNames: 01005 01010 ... LAL4 (128 total)
varLabels: cod diagnosis ... date last seen (21
total)

varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)’
pubMedIds: 14684422 16243790
Annotation: hgu95av2

For the network data we use a data set of literature-curated human protein-
protein interactions that have been obtained from HPRD [10]. Altogether the
entire network used here comprises 9386 nodes and 36504 edges.

> interactome

A graphNEL graph with undirected edges
Number of Nodes = 9386
Number of Edges = 36504

In the next step we have to map the Affymetrix identifiers to the protein iden-
tifiers of the PPI network. Since several probesets represent one gene, we have
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to select one or concatenate them into one gene. One possibility is to use the
probeset with the highest variance for each gene. This is accomplished for the
ExpressionSet with the mapByVar. It also maps the Affymetrix IDs to the iden-
tifiers of the network using the chip annotations and network genelDs, which are
unique, and returns the network names in the expression matrix. This reduces
the expression matrix to the genes which are present in the network. Please
note that the number of nodes and edges in the network and resulting module
can slightly vary depending on the version of chip annotation used.

> mapped.eset <- mapByVar(ALL, network = interactome,
+ attr = "geneID")
> mapped.eset[1:5, 1:5]

01005 01010 03002 04006 04007
MAPK3(5595) 7.597323 7.479445 7.567593 7.384684 7.905312
TIE1(7075) 5.046194 4.932537 4.799294 4.922627 4.844565
CYP2C19(15657) 3.900466 4.208155 3.886169 4.206798 3.416923
BLR1(643) 5.903856 6.169024 5.860459 6.116890 5.687997
DUSP1(1843) 8.570990 10.428299 9.616713 9.937155 9.983809

The data set is reduced to 6235 genes. To find out how many genes are contained
in the human interactome we calculate the intersect.

> length(intersect (rownames (mapped.eset), nodes(interactome)))
[1] 6235

Since the human interactome contains 6235 genes from the chip we can either
extract a subnetwork with the method subNetwork or preceed with the whole
network. Automatically the negative expectation value is used later when deriv-
ing the scores for the nodes without intensity values. We continue by extracting
the subnetwork. Furthermore, we want to identify modules as connected sub-
graphs, therefore we use the largest connected component of the network and
remove existing self-loops.

> network <- subNetwork (rownames (mapped.eset), interactome)
> network

A graphNEL graph with undirected edges
Number of Nodes = 6235
Number of Edges = 25014

> network <- largestComp (network)
> network <- rmSelfLoops (network)
> network

A graphNEL graph with undirected edges
Number of Nodes = 5721
Number of Edges = 23364

So finally we derive a chip-specific network which comprises 5721 nodes and
23364 edges.
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4.2 Calculating the p-values

Differential expression In the next step we use limma [13] to analyse dif-
ferential expression between the B-cell and T-cell groups.

library(1imma)

design <- model.matrix(~-1 + factor(c(substr(unlist (ALL$BT),
0, 1))))

colnames(design) <- c("B", "T")

contrast.matrix <- makeContrasts(B - T, levels = design)

contrast.matrix

vV V.V + Vv Vv

Contrasts
Levels B - T
B 1
T -1

> fit <- 1lmFit(mapped.eset, design)
> fit2 <- contrasts.fit(fit, contrast.matrix)
> fit2 <- eBayes(fit2)

We get the corresponding p-values and and calculate the scores thereupon.

> pval <- fit2$p.valuel, 1]

4.3 Calculation of the score

We have obtained the p-values for each gene for differential expression. Next, the
p-values are used to fit the Beta-uniform mixture model to their distribution
[5, 9]. The following plot shows the fitted Beta-uniform mixture model in a
histogram of the p-values. The quantile-quantile plot indicates that the BUM
model fits to the p-value distribution. Although the data shows a slight deviation
from the expected values, we continue with the fitted parameters.

> fb <- fitBumModel (pval, plot = FALSE)
> fb

Beta-Uniform-Mixture (BUM) model

6235 pvalues fitted

Mixture parameter (lambda): 0.453
shape parameter (a): 0.145
log-likelihood: 11998.3

> dev.new(width = 13, height = 7)
> par(mfrow = c(1, 2))

> hist(fb)

> plot(fb)

14
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Figure 7: Histogram of p-values, overlayed by the fitted BUM model in red and
the m-upper bound displayed as a blue line. The right plot shows a quantile-
quantile plot, in which the estimated p-values from the model fit deviate slightly
from the observed p-values.

The nodes of the network are now scored using the fitted BUM model and a
FDR of 1e-14. Such a low FDR was chosen to obtain a small module, which
can be visualized.

> scores <- scoreNodes(network = network, fb = fb,
+ fdr = 1le-14)

In the next step the network with the scores and edges is written to file and the
heinz algorithm is used to calculate the maximum-scoring subnetwork.

> writeHeinzEdges (network = network, file = "ALL_edges_001",
+ use.score = FALSE)

[1] TRUE

> writeHeinzNodes (network = network, file = "ALL_nodes_001",
+ node.scores = scores)

(1] TRUE

4.4 Calculation of the maximum-scoring subnetwork

In the following the heinz algorithm is started using the heinz.py python script.
A new implementation Heinz v2.0 is also available at https://software.cwi.
nl/software/heinz , with slightly different and additional options. This starts
the integer linear programming optimization and calculates the maximum-scoring
subnetwork using CPLEX.

The command is: "heinz.py -e ALL edges 001.txt -n ALL nodes 001.txt -N
True -E False" or runHeinz on a linux machine with CPLEX installed.
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The output is precalculated in ALL_nodes_001.txt.0.hnz and
ALL_edges_001.txt.0.hnz in the R BioNet directory, subdirectory extdata.
The output is loaded as a graph with the following commands:

> datadir <- file.path(path.package("BioNet"), "extdata")
> module <- readHeinzGraph(node.file = file.path(datadir,
+ "ALL_nodes_001.txt.0.hnz"), network = network)

Attributes are added to the module, to depict the difference in expression and
the score later.

nodeDataDefaults(module, attr = "diff") <- ""

nodeData(module, n = nodes(module), attr = "diff") <- fit2%coefficients[nodes(module),
1]

nodeDataDefaults(module, attr = "score') <- ""

nodeData(module, n = nodes(module), attr = "score'") <- scores[nodes(module)]

nodeData (module) [1]

vV VvV + Vv Vv

$ BTK(695)"
$ BTK(695) ~ $genelD
[1] ll695ll

$ " BTK(695) “$geneSymbol
[1] "BTK"

$ BTK(695) “$diff
[1] 0.919985

$ BTK(695) ~$score
[1] -8.907795

We save the module as XGMML file and look at it with the software Cytoscape
[12], colouring the node by their "diff" attribute and changing the node shape
according to the "score".

> saveNetwork(module, file = "ALL_module", type = "XGMML")

[1] "...adding nodes"
[1] "...adding edges"
[1] "...writing to file"

The resulting network with 31 nodes and 32 edges and coloured nodes, looks
like this:
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Figure 8: Resultant module visualized in Cytoscape. Significantly upregu-
lated genes are coloured in red, genes that show significant downregulation are
coloured in green, for the contrast B vs. T cells. The score of the nodes is shown
by the shape of the nodes, circles indicate a positive score, diamonds a negative
score.

The module comprises several parts, one part showing a high upregulation in the
B-T contrast (CD79A, BLNK, CD19, CD9, CD79B) participates in B cell acti-
vation and differentiation and response to stimuli according to their GO anno-
tation. While the other large upregulated part is involved in antigen processing
and presentation and immune response (HLA-DMA, HLA-DPA1, CD4, HLA-
DMB, HLA-DRB5, HLA-DPB1). T cell/leukocyte activating genes (CD3D,
CD3G, CD3Z, ENO2, TRAT1, ZAP70) are coloured in green. The lower mid-
dle part is involved in negative regulation of apoptosis, developmental processes
and programmed cell death. Most of them are involved in overall immune sys-
tem processes and as expected, mostly B and T cell specific genes comprise the
resulting module, as this contrast was used for the test of differential expression.

5 Consensus modules

To assess the variation inherent in the integrated data, we use a jackknife re-
sampling procedure resulting in an ensemble of optimal modules. A consensus
approach summarizes the ensemble into one final module containing maximally
robust nodes and edges. The resulting consensus module visualizes variable re-
gions by assigning support values to nodes and edges. The consensus module
is calculated using the acute lymphoblastic leukemia data from the previous
section.
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First, we perform the same steps as explained in 4 and start with the data
obtained up to subsection 4.2. We use the chip-specific network which comprises
5721 nodes and 23364 edges and the ALL microarray dataset.

5.1 Calculating the p-values

Differential expression We resample the microarrays and calculate p-values
using a standard two-sided t-test for the differential expression between the B-
cell and T-cell groups. 100 jackknife replicates are created and used to test for
differential expression.

Depending on the number of resamples the next steps can take a while.

> j.repl <- 100
> resampling.pvals <- list()
> for (i in 1:j.repl) {
+ resampling.result <- resamplingPvalues(exprMat = mapped.eset,
groups = factor(c(substr(unlist (ALL$BT),
0, 1))), resampleMat = FALSE, alternative = "two.sided")
resampling.pvals[[i]] <- resampling.result$p.values
print (i)

+ + + + +

}

We use the obtained p-values to calculate scores thereupon.

5.2 Calculation of the score

For each jackknife replicate a BUM model is fitted to the p-value distribution,
which is used to calculate node scores. The same FDR as before is used.

fb <- lapply(resampling.pvals, fitBumModel, plot
starts = 1)
resampling.scores <- c()
for (i in 1:j.repl) {
resampling.scores[[i]] <- scoreNodes(network = network,
fb = fb[[i]], fdr = le-14)

FALSE,

+ + 4+ VvV VvV + Vv

}

We create a matrix of scores to calculate the modules. This creates one node
file as input for the ILP calculation. Alternatively one node file can be created
for each jackknife resample, which then can be run in parallel on a cluster or
multicore machine. This approach is preferable, due to possibly many jackknife
resamples. For simplification we use the matrix variant here.

> score.mat <- as.data.frame(resampling.scores)
> colnames(score.mat) <- paste("resample", (1:j.repl),
+ sep = un)

The node scores are written to file in the next step. For the edge scores the
binary interactions are written to file with a score of 0.
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> writeHeinzEdges (network = network, file = "ALL_e_resample",
+ use.score = FALSE)

> writeHeinzNodes (network = network, file = "ALL_n_resample",
+ node.scores = score.mat)

5.3 Calculation of the optimal subnetworks

In the following the heinz algorithm is started using the heinz.py python
script. This starts the integer linear programming optimization and calculates
the maximum-scoring subnetwork using CPLEX. In contrast to previous calcula-
tions we define a size the resulting modules should have. We set it with the size
parameter s to the size of the original module, which was 31. This fixes the size
of the output modules for a later consensus module calculation.

The command is: "heinz.py -e ALL e resample.txt -n ALL n_resample.txt
-N True -E False -S 31"

The output is precalculated in ALL_n_resample.txt.0.hnz and ALL_e_resample.txt.0.hnz
in the R BioNet directory, subdirectory extdata. The output is loaded as a list
of graphs with the following commands:

> datadir <- file.path(path.package("BioNet"), '"extdata")
> modules <- readHeinzGraph(node.file = file.path(datadir,
+ "ALL_n_resample.txt.0.hnz"), network = network)

5.4 Calculation of the consensus module

We have obtained now 100 modules from the resampled data. These are used
to calculate consensus scores for the nodes and edges of the network and re-
calculate an optimal module. This module, termed consensus module, captures
the variance in the microarray data and depicts the robust solution. Confidence
values for the nodes and edges can be visualized by the node size and edge
width, allowing to identify stable parts of the module.

We therefore use the modules to calculate consensus scores in the following and
rescore the network:

> cons.scores <- consensusScores(modules, network)

> writeHeinz(network = network, file = "ALL_cons',
+ node.scores = cons.scores$N.scores, edge.scores = cons.scores$E.scores)
[1] TRUE

They are run using CPLEX: "heinz.py -e ALL cons e.txt -n ALL cons n.txt
-N True -E True -S 31". Mind to also use the edge scores with -E True.

The results are loaded in R and visualized.

> datadir <- file.path(path.package("BioNet"), "extdata")
> cons.module <- readHeinzGraph(node.file = file.path(datadir,
+ "ALL_cons_n.txt.0.hnz"), network = network)
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> cons.edges <- sortedEdgeList (cons.module)

> E.width <- 1 + cons.scores$E.freq[cons.edges] *

+ 10

> N.size <- 1 + cons.scores$N.freq[nodes(cons.module)] *
+ 10

> plotModule(cons.module, edge.width = E.width,
+ vertex.size = N.size, edge.label = cons.scores$E.freq[cons.edges] *
+ 100, edge.label.cex = 0.6)

o
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Figure 9: Resultant consensus module. The size of the nodes and the width
of the edges depict the robustness of this node or edge as calculated from the
jackknife replicates.

6 Installation

6.1 The BioNet package

The BioNet package is freely available from Bioconductor at
http://www.bioconductor.org.

6.2 External code to call CPLEX

The algorithm to identify the optimal scoring subnetwork is based on the soft-
ware dhea (district heating) from The C++ code was extended in order to
generate suboptimal solutions and is controlled over a Python script. The dhea
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code uses the commercial CPLEX callable library version 9.030 by ILOG, Inc.
(Sunnyvale,CA). In order to calculate the optimal solution a CPLEX library is
needed. The other routines, the dhea code and heinz.py Python script (current
version 1.63) are publicly available for academic and research purposes within
the heinz (heaviest induced subgraph) package of the open source library LiSA
(http://www.planet-lisa.net). The dhea code has to be included in the same
folder as heinz.py, in order to call the routine by the Python code. To calcu-
late the maximum-scoring subnetwork without an available CPLEX license a
heuristic is included in the BioNet package, see runFastHeinz.

The new version of Heinz v2.0 is available at https://software.cwi.
nl/software/heinz.
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