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Principal components analysis has been widely used in population genetics in order to
study population structure in genetically heterogeneous populations. More recently, it has
been proposed as a method for dealing with the problem of confounding by population
structure in genome-wide association studies.

The maths

Usually, principal components analysis is carried out by calculating the eigenvalues and
eigenvectors of the correlation matrix. With N cases and P variables, if we write X for
the N x P matrix which has been standardised so that columns have zero mean and unit
standard deviation, we find the eigenvalues and eigenvectors of the P x P matrix X'. X
(which is N or (N — 1) times the correlation matrix depending on which denominator was
used when calculating standard deviations). The first eigenvector gives the loadings of each
variable in the first principal component, the second eigenvector gives the loadings in the
second component, and so on. Writing the first C' component loadings as columns of the
P x C matrix B, the N x C' matrix of subjects’ principal component scores, .S, is obtained by
applying the factor loadings to the original data matrix, i.e. S = X.B. The sum of squares
and products matrix, ST.S = D, is diagonal with elements equal to the first C' eigenvalues
of the X'.X matrix, so that the variances of the principal components can obtained by
dividing the eigenvalues by N or (N —1).

This standard method is rarely feasible for genome-wide data since P is very large in-
deed and calculating the eigenvectors of XT.X becomes impossibly onerous. However, the
calculations can also be carried out by calculating the eigenvalues and eigenvectors of the
N x N matrix X.XT. The (non-zero) eigenvalues of this matrix are the same as those
of XT.X, and its eigenvectors are proportional to the principal component scores defined
above; writing the first C' eigenvectors of X. X' as the columns of the N x C matrix, U,
then U = S.D~Y2. Since for many purposes we are not too concerned about the scaling
of the principal components, it will often be acceptable to use the eigenvectors, U, in place
of the more conventionally scaled principal components. However some attention should be
paid to the corresponding eigenvalues since, as noted above, these are proportional to the



variances of the conventional principle components. The factor loadings may be calculated
by B=XT.U.D /2

Using this method of calculation, it is only (!) necessary to find the eigenvalues and
eigenvectors of an N x N matrix. Current microarray-based genotyping studies are such
that N is typically a few thousands while P may be in excess of one million.

An example

In this exercise, we shall calculate principal component loadings in controls alone and then
apply these loading to the whole data. This is more complicated than the simpler procedure
of calculating principal components in the entire dataset but avoids component loadings
which unduly reflect case/control differences; using such components to correct for population
structure would seriously reduce the power to detect association since one would, to some
extent, be “correcting” for case/control diﬂ'erenceﬂ. We will also “thin” the data by taking
only every tenth SNP. We do this mainly to reduce computation time but thinning is often
employed to minimize the impact of linkage disequilibrium (LD), to reduce the risk that the
larger components may simply reflect unusually long stretches of LD rather than population
structure. Of course, this would require a more sophisticated approach to thinning than that
used in this demonstration.

In a more sophisticated approach, one might use the output of snp.imputation to elim-
inate all but one of a groups of SNPs in strong LD for thinning.

We shall use the data introduced in the main vignette. We shall first load the data and
extract the controls.

require (snpStats)

data(for.exercise)

controls <- rownames(subject.support) [subject.support$cc==0]
use <- seq(1, ncol(snps.10), 10)

ctl.10 <- snps.10[controls,use]
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The next step is to standardize the data to zero mean and unit standard deviation and to
calculate the X. X1 matrix. These operations are carried out using the function xxt.

> xxmat <- xxt(ctl.10, correct.for.missing=FALSE)

The argument correct.for.missing=FALSE selects a very simple missing data treatment,
i.e. replacing missing values by their mean. This is quite adequate when the proportion of
missing data is low. The default method is more sophisticated but introduces complications
later so we will keep it simple.

When performing a genome-wide analysis, it will usually be the case that all the data
cannot be stored in a single SnpMatrix object. Usually they will be organized with one

L An alternative approach is to standardise the X matrix so that each column has zero mean in both cases
and controls. This can be achieved by using the strata argument in the call to xxt. Here, however, we have
used controls only since this reduces the size of the matrix for the eigenvalue and vector calculations.



matrix for each chromosome. In these cases, it is straightforward to write a script which
carries out the above calculations for each chromosome in turn, saving the resultant matrix
to disk each time. When all chromosomes have been processed, the X. X' matrices are read
and added together.

The next step of the calculations requires us to calculate the eigenvalues and eigenvectors
of the X.X™T matrix. This can be carried out using a standard R function. We will save the
first five components.

> evv <- eigen(xxmat, symmetric=TRUE)
> pcs <- evv$vectors[,1:5]

> evals <- evv$values[1:5]

> evals

[1] 167181 8890 8709 8504 8379

Here, pcs refers to the scaled principal components (i.e. to the columns of the matrix U in
our mathematical introduction) and all have the same variance. The eigenvalues give an idea
of the relative magnitude of these sources of variation. The first principal component has
a markedly larger eigenvalue and we might hope that this reflects population structure. In
fact these data were drawn from two very different populations, as indicated by the stratum
variable in the subject support frame. The next set of commands extract this variable for
the controls and plot box plots for the first two components by stratum.

> pop <- subject.support[controls,"stratum"]
> par(mfrow=c(1,2))

> boxplot(pcs[, 1] pop)

> boxplot(pcs[, 2] pop)
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Clearly the first component has captured the difference between the populations. Equally
clearly, the second principal component has not.

The next step in the calculation is to obtain the SNP loadings in the components. This
requires calculation of B = X71.5.D~'/2. Here we calculate the transpose of this matrix,
BT = D Y287 X, using the special function snp.pre.multiply which pre-multiplies a
SnpMatrix object by a matrix after first standardizing it to zero mean and unit standard
deviation.

> btr <- snp.pre.multiply(ctl.10, diag(1/sqrt(evals)) }*} t(pcs))

We can now apply these loadings back to the entire dataset (cases as well as controls) to
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derive scores that we can use to correct for population structure. To do that we use the
function snp.post.multiply which post-multiplies a SnpMatrix by a general matrix, after
first standardizing the columns of the SnpMatrix to zero mean and unit standard deviation.
Note that it is first necessary to select out those SNPs that we have actually used in the
calculation of components.

> pcs <- snp.post.multiply(snps.10[,use], t(btr))

Finally we shall evaluate how successful the first principal component is in correcting for
population structure effects. (snp.rhs.tests return glm objects.)

> c¢c <- subject.support$cc

> uncorrected <- single.snp.tests(cc, snp.data=snps.10)

> corrected <- snp.rhs.tests(cc"pcs[,1], snp.data=snps.10)
> par(mfrow=c(1,2),cex.sub=0.85)

> qq.chisq(chi.squared(uncorrected, 1), df=1)

N omitted lambda
28497.000 0.000 1.712

> qq.chisq(chi.squared(corrected), df=1)

N omitted lambda
28497 .000 0.000 1.009
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The use of the first principal component as a covariate has been quite successful in reducing
the serious over-dispersion due to population structure. Indeed it is just as successful as
stratification by the observed stratum variable.
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