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limpa-package Linear Models for Proteomics Data (Accounting for Missing Values)

Description

This package implements a pipeline for quantification and differential expression analysis of mass-
spectrometry-based proteomics data.

Mass spectrometry (MS)-based proteomics is a powerful tool in biomedical research. Recent ad-
vancements in label-free methods and MS instruments have enabled the quantitative characterisa-
tion of large-scale complex biological samples with the increasingly deeper coverage of the pro-
teome. However, missing values are still ubiquitous in MS-based proteomics data. We observe
from a wide range of real datasets that missingness in label-free data is intensity-dependent, so that
the missing values are missing not at random or, in other words, are non-ignorable.

This package implements statistical and computational methods for analysing MS-based label-free
proteomics data with non-ignorable missing values. The package use the observed proteomics data
to estimate the detection probability curve (DPC), which provides a formal probabilistic model for
the intensity-dependent missingness. Based on exponential tilting, the DPC estimates the detection
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probabilities given the underlying intensity of each observation, observed or unobserved. Impor-
tantly, the DPC evaluates how much statistical information can or cannot be recovered from the
missing value pattern, and can be used to inform downstream analyses such as differential expres-
sion (DE) analysis.

Next, the package implements a novel protein quantification method, called DPC-quant, where
missing values are represented by the DPC. An empirical Bayes scheme is employed to borrow in-
formation across the tens of thousands of peptides measured in a typical experiment. A multivariate
normal prior is estimated empirically from data to describe the variability in log-intensities across
the samples and across the peptides.

Finally, quantification uncertainty is incorporated into the differential expression analysis using pre-
cision weights. Leveraging the limma package, a new variance modelling approach with multiple
predictors is used, which allows the DPC-quant precisions to be propagated to the differential ex-
pression analysis while simultaneously assuming a mean-variance relationship. The new differential
expression pipeline has been implemented in the limma R package in the vooma() function.

The limpa package is fully compatible with limma pipelines, allowing any arbitrarily complex ex-
perimental design and other downstream tasks such as the gene ontology or pathway analysis.

Author(s)

Mengbo Li and Gordon K Smyth

References

Li M (2024). Linear Models and Empirical Bayes Methods for Mass Spectrometry-based Pro-
teomics Data. PhD Thesis, University of Melbourne. http://hdl.handle.net/11343/351600

Li M, Smyth GK (2023). Neither random nor censored: estimating intensity-dependent proba-
bilities for missing values in label-free proteomics. Bioinformatics 39(5), btad200. 10.1093/
bioinformatics/btad200 )

completeMomentsON Complete Distribution Moments from Observed Normal Model

Description

Mean and standard-deviation of the complete data distribution under the observed normal model.

Usage

completeMomentsON(mean.obs=6, sd.obs=1, dpc=c(-4,0.7))

Arguments

mean.obs mean of observed normal distribution.

sd.obs standard deviation of observed normal distribution.

dpc numeric vector of length 2 giving the DPC intercept and slope.

http://hdl.handle.net/11343/351600
10.1093/bioinformatics/btad200
10.1093/bioinformatics/btad200
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Details

Under the observed normal model, calculate the mean and standard deviation of the complete data
distribution that would have occurred if the missing value mechanism hadn’t operated.

Value

A list with compoenents

mean.comp mean of complete data distribution.

sd.comp standard deviation of complete data distribution.

prob.obs unconditional probability that values are observed.

Examples

completeMomentsON(mean.obs=6, sd.obs=2)

dpc Detection Probability Curve Assuming Observed Normal Model

Description

Detection probability curve for label free shotgun proteomics data assuming observed normal in-
tensities.

Usage

dpc(y, maxit = 100, eps = 1e-04, b1.upper = 1)

Arguments

y numeric matrix of log2-transformed intensities. Rows correspond to peptide
precursors and columns to samples. Any object such as an EList that can be
coerced to a matrix is also acceptable.

maxit maximum number of iterations.

eps convergence tolerance.

b1.upper upper bound for beta1.

Details

Estimate the detection probability curve (DPC) for label-free shotgun proteomics data using the
method described by Li & Smyth (2023). This function assumes that the observed log-intensities
are normally distributed (the "observed normal" model), and uses exponential tilting to reformulate
the DPC in terms of observed statistics instead of in terms of unobserved quantities.
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Value

A list with components

dpc estimated DPC coefficients.

history iteration history.

dpc.start initial values estimated for the DPC coefficients.

prop.detected proportion of observed values for each row.

mu.prior prior value for row-wise means for observed values.

n.prior precision of prior for row-wise means, expressed as effective number of obser-
vations.

s2.prior prior value for row-wise variances for observed values.

df.prior precision of prior for row-wise variances, expressed as effective degrees of free-
dom.

mu.obs posterior row-wise means for observed values.

s2.obs posterior row-wise variances for observed values.

mu.mis posterior row-wise means for values that are missing.

References

Li M, Smyth GK (2023). Neither random nor censored: estimating intensity-dependent proba-
bilities for missing values in label-free proteomics. Bioinformatics 39(5), btad200. 10.1093/
bioinformatics/btad200

See Also

dpcCN

Examples

y <- simProteinDataSet(n.peptides=100, n.groups=1)
out <- dpc(y)
out$dpc

dpcCN Detection Probability Curve Assuming Complete Normal Model

Description

Detection probability curve for label-free shotgun proteomics data assuming a complete normal
model for the peptide intensities.

Usage

dpcCN(y, dpc.start= c(-4,0.7), iterations = 3, verbose = TRUE)

10.1093/bioinformatics/btad200
10.1093/bioinformatics/btad200
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Arguments

y numeric matrix of log2-intensities. Rows correspond to peptide precursors and
columns to samples.

dpc.start numeric vector of length 2 giving starting estimates for the DPC intercept and
slope.

iterations number of outer iterations.

verbose if TRUE, then progress information will be printed from each iteration.

Details

Estimate the detection probability curve (DPC) for label-free shotgun proteomics data by maximum
posterior assuming that the complete log-intensities are normally distributed (the "complete normal"
model). The complete log-intensities are the values that would have been observed if the missing
value mechanism had not operated.

The algorithm uses an alternating iteration (Smyth, 1996), alternately estimating the row-wise
means and standard deviations (mu and sigma) for fixed DPC and estimating the DPC for fixed
mu and sigma. The inner estimations use the BFGS algorithm implemented in the optim function.
Three outer iterations are usually sufficient.

dpc estimates the DPC by a different method, described in Li & Smyth (2023), based on exponential
tilting and assuming that only the observed values are normally distributed (the "observed normal"
model).

Value

A list with components

dpc numeric vector of length 2 giving estimated DPC coefficients.

mu numeric vector of length nrow(y) giving estimated complete data row-wise
means.

sigma numeric vector of length nrow(y) giving estimated complete data row-wise
standard deviations.

Note

This function may underestimate the DPC slope if entirely missing peptides are omitted and the
proportion of peptides that are entirely missing by chance is not small.

dpcCN can take several minutes on large datasets so, by default, progress information is turned on
with verbose=TRUE. The function will run quietly if verbose=FALSE is set.

References

Li M, Smyth GK (2023). Neither random nor censored: estimating intensity-dependent proba-
bilities for missing values in label-free proteomics. Bioinformatics 39(5), btad200. 10.1093/
bioinformatics/btad200

Li M (2024). Linear Models and Empirical Bayes Methods for Mass Spectrometry-based Pro-
teomics Data. PhD Thesis, University of Melbourne. http://hdl.handle.net/11343/351600

10.1093/bioinformatics/btad200
10.1093/bioinformatics/btad200
http://hdl.handle.net/11343/351600
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Smyth GK (1996). Partitioned algorithms for maximum likelihood and other non-linear estimation.
Statistics and Computing 6, 201-216. doi:10.1007/BF00140865 https://gksmyth.github.io/
pubs/partitio.pdf

See Also

dpc.

Examples

y <- simProteinDataSet(n.peptides=100, n.groups=1)
out <- dpcCN(y)
out$dpc

dpcDE Fit Linear Model With Precision Weights

Description

Fit linear models and make precision weights from the DPC-Quant standard errors.

Usage

dpcDE(y, design, plot=TRUE, ...)

Arguments

y protein-level EList produced by dpcQuant().

design design matrix.

plot should the variance trend be plotted?

... other arguments are passed to voomaLmFit.

Details

Calls voomaLmFit to compute vooma precision weights from the DPC-Quant standard errors stored
in y and to use those weights to fit protein-wise linear models. Any voomaLmFit functinality can be
used, giving access to optional empirical sample weights or random blocks.

Value

An MArrayLM object suitable for analysis in limma.

References

Li M (2024). Linear Models and Empirical Bayes Methods for Mass Spectrometry-based Pro-
teomics Data. PhD Thesis, University of Melbourne. http://hdl.handle.net/11343/351600

https://doi.org/10.1007/BF00140865
https://gksmyth.github.io/pubs/partitio.pdf
https://gksmyth.github.io/pubs/partitio.pdf
http://hdl.handle.net/11343/351600
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See Also

voomaLmFit

Examples

y.peptide <- simProteinDataSet()
y.protein <- dpcQuant(y.peptide, "Protein", dpc=c(-4,0.7))
Group <- factor(y.peptide$targets$Group)
design <- model.matrix(~Group)
fit <- dpcDE(y.protein, design)

dpcQuant Quantify Proteins

Description

Use the DPC to quantify protein expression values.

Usage

## S3 method for class 'EList'
dpcQuant(y, protein.id = "Protein.Group", dpc = NULL, dpc.slope = 0.8,

verbose = TRUE, chunk = 1000, ...)
## S3 method for class 'EList'
dpcImpute(y, dpc = NULL, dpc.slope = 0.8, verbose = TRUE, chunk = 1000, ...)

Arguments

y a numeric matrix or EList of peptide-level log2-expression values. Columns are
samples and rows are peptides or precursors.

protein.id protein IDs. Either an annotation column name (if y is an EList) or a character
vector of length nrow(y).

dpc numeric vector giving intercept and slope of DPC. Alternatively the output ob-
jects from dpc or dpcCN are also acceptable.

dpc.slope slope coefficient of DPC. Only used if dpc is NULL.

verbose should progress information be output? If TRUE, then progress information is
output every 1000 proteins.

chunk When verbose=TRUE, how often to output progress information. By default,
reports every 1000 proteins.

... other arguments are passed to dpcQuantHyparam.
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Details

Implements the DPC-Quant method, which quantifies protein log2-expression values from peptide
data. The method represents missing values probabilistically using the PDC and returns maximum
posterior estimates for all the protein log2-expression values, so that there are no missing values in
the final summary.

The dpc function is usually used to estimate the detection probability curve (DPC) before run-
ning dpcQuant, however a preset DPC slope can also be used. If the dpc argument is NULL, then
dpc.slope will be used as the DPC together with a DPC intercept estimated by estimateDPCIntercept.

The output from dpcQuant can be input to dpcDE.

dpcImpute performs imputation without summarization by treating each row as a separate protein.

Value

dpcQuant() produces an EList object with a row for each protein, with the following extra com-
ponents:

other$n.observations

matrix giving the number of missing non-missing peptide observations support-
ing each protein expression value.

other$standard.error

matrix giving the standard error of each protein expression value.

dpcImpute() produces an EList object with the same number of rows as y.

Note

dpcQuant can take several minutes on large datasets so, by default, progress information is turned
on with verbose=TRUE. The function will run quietly if verbose=FALSE is set.

References

Li M (2024). Linear Models and Empirical Bayes Methods for Mass Spectrometry-based Pro-
teomics Data. PhD Thesis, University of Melbourne. http://hdl.handle.net/11343/351600

See Also

dpc, dpcQuantHyperparam, dpcDE, EList-class.

Examples

y.peptide <- simProteinDataSet(n.groups=1,samples.per.group=4,prop.missing=0.2)
y.protein <- dpcQuant(y.peptide, "Protein", dpc.slope=0.7)

http://hdl.handle.net/11343/351600
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dpcQuantHyperparam Estimate Hyperparameters for DPC-Quant

Description

Estimate hyperparameters for the DPC-based protein quantification method (DPC-Quant).

Usage

dpcQuantHyperparam(y, protein.id, dpc.slope = 0.7,
sd.quantile.for.logFC = 0.9, robust = FALSE, ...)

dpcImputeHyperparam(y, dpc.slope = 0.7,
sd.quantile.for.logFC = 0.9, robust = FALSE, ...)

Arguments

y a numeric matrix of peptide-level log2-expression values. Columns are samples
and rows are peptides or precursors.

protein.id a character vector of length nrow(y) giving protein IDs.

dpc.slope slope of the DPC.
sd.quantile.for.logFC

a number between 0 and 1. The quantile of the precursor-level variances to
represent the typical between-sample variation.

robust should robust empirical Bayes moderation be applied to the protein standard de-
viations? robust=TRUE will cause very large standard deviations to be squeezed
less strongly towards the prior value.

... other arguments are passed to imputeByExpTilt.

Details

Estimates and returns the empirical Bayes hyperparameters required for DPC-Quant protein quan-
tification. dpcQuantHyperparam is called by dpcQuant function, and dpcImputeHyperparam is
called by dpcImpute.

Value

A list with components

prior.mean mean of the global prior distribution for protein log-expression values. Repre-
sents the typical average log-expression of a protein.

prior.sd standard deviation of the global prior distribution for protein log-expression val-
ues. Represents the standard deviation of average log-expression across pro-
teins.

prior.logFC standard deviation to be expected between log-expression values for the same
protein across conditions.
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sigma protein standard deviations from additive model fitted to peptide log expression
values. Numeric vector of same length as unique(protein.id)).

The last component is omitted in the dpcImputeHyperparam output.

References

Li M (2024). Linear Models and Empirical Bayes Methods for Mass Spectrometry-based Pro-
teomics Data. PhD Thesis, University of Melbourne. http://hdl.handle.net/11343/351600

See Also

dpcQuant, imputeByExpTilt

estimateDPCIntercept Estimate DPC Intercept

Description

Estimate the DPC intercept given a value for the slope.

Usage

estimateDPCIntercept(y, dpc.slope = 0.8, trace = FALSE)

Arguments

y numeric matrix of log2-intensities, or any data object than can be coerced to a
matrix. Includes NAs. Rows correspond to peptide precursors and columns to
samples.

dpc.slope DPC slope.

trace if TRUE, then progress information will be printed from each glm iteration.

Details

Estimates the intercept coefficient of the detection probability curve (DPC) by using imputeByExpTilt
to impute complete data, then fitting a binomial glm model with the slope as an offset vector. If the
dataset is large, then similar y values are aggregated before fitting the glm.

Value

A single numeric value giving the intercept.

See Also

imputeByExpTilt.

http://hdl.handle.net/11343/351600
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Examples

y <- simProteinDataSet(n.peptides=100, n.groups=1, dpc.slope=0.7)
estimateDPCIntercept(y, dpc.slope=0.7)

filterCompoundProteins

Filtering Based On Protein Annotation

Description

Filter peptides or proteins from the dataset based on uniqueness of annotation.

Usage

## Default S3 method:
filterCompoundProteins(y, protein.group, ...)
## S3 method for class 'EList'
filterCompoundProteins(y, protein.group="Protein.Group", ...)
## Default S3 method:
filterSingletonPeptides(y, protein.group, min.n.peptides = 2, ...)
## S3 method for class 'EList'
filterSingletonPeptides(y, protein.group="Protein.Group", min.n.peptides = 2, ...)
## Default S3 method:
filterNonProteotypicPeptides(y, proteotypic, ...)
## S3 method for class 'EList'
filterNonProteotypicPeptides(y, proteotypic="Proteotypic", ...)

Arguments

y a matrix, EList object or EListRaw object containing log2-expression values.

protein.group protein group for each row of y. Can be either a character vector of length
nrow(y) or the name of an annotation column.

proteotypic indicates whether each peptide is proteotypic (detectable and unique to one pro-
tein). Should contain 0/1 or TRUE/FALSE values. Can be either a vector of
length nrow(y) or the name of an annotation column.

min.n.peptides minimum number of peptides required in a protein.

... other arguments are not currently used.

Details

Filter peptide or proteins from the dataset based on uniqueness of annotation. filterCompoundProteins
removes compound protein groups consisting of multiple proteins separated by ";" delimiters.
filterSingletonPeptides removes proteins with only one peptide. filterNonProteotypicPeptides
removes peptides that belong to more than one protein, using the "Proteotypic" annotation column
that is returned by DIA-NN and other proteomics quantification software.
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Value

An object the same as y but with non-compliant rows removed.

See Also

readDIANN

fitZTLogit Fit Capped Logistic Regression To Zero-Truncated Binomial Data

Description

Estimate a logistic regression, with optionally capped probabilities, by maximum likelihood with
zero-truncated data.

Usage

fitZTLogit(n.successes, n.trials, X = NULL, capped = FALSE,
beta.start = NULL, alpha.start = 0.95)

Arguments

n.successes number of binomial successes (numeric vector). Should be bounded below by 1
and bounded above by n.trials.

n.trials number of binomial trials (numeric vector).
X the regression design matrix. Number of rows should match length(n.successes).
capped if TRUE, then probability of a success will be capped at alpha < 1, where alpha is

to be estimated.
beta.start starting values for the regression coefficients. Of same length as ncol(X).
alpha.start starting value for alpha.

Details

Estimates a logistic regression equation for zero-truncated binomial observations. Optionally esti-
mates a limiting value for the probabilities that may be less than one.

The function maximizes the zero-truncated binomial likelihood using the optim function with
method="BFGS". The fitted probabilities are equal to alpha * plogis(X %*% beta).

Value

A list with components

beta linear predictor coefficients.
alpha capping parameter, maximum or asymptotic value for the probabilities.
p fitted probabilities.
deviance minus twice the maximized log-likelihood.
calls number of function calls used in the optimization.
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References

Li M, Smyth GK (2023). Neither random nor censored: estimating intensity-dependent proba-
bilities for missing values in label-free proteomics. Bioinformatics 39(5), btad200. 10.1093/
bioinformatics/btad200

Examples

# Generate binomial data
n <- 30
n.trials <- rep(4,n)
x <- seq(from=3, to=9, length.out=n)
X <- model.matrix(~x)
beta <- c(-4,0.7)
p <- plogis(X %*% beta)
n.successes <- rbinom(n, size=n.trials, prob=p)

# Zero truncation
is.pos <- (n.successes > 0)
n.successes <- n.successes[is.pos]
n.trials <- n.trials[is.pos]
x <- x[is.pos]
X <- X[is.pos,]

# Zero-truncated regression
fit <- fitZTLogit(n.successes, n.trials, X)
p.observed <- n.successes / n.trials
plot(x, p.observed)
lines(x, fit$p)

imputeByExpTilt Impute Missing Values by Exponential Tilting

Description

Impute missing values in a log-expression matrix by applying exponential tilting to rows, columns
or both.

Usage

## Default S3 method:
imputeByExpTilt(y, dpc.slope = 0.7, prior.logfc = NULL, by = "both", ...)
expTiltByRows(y, dpc.slope = 0.7, sigma.obs = NULL)
expTiltByColumns(y, dpc.slope = 0.7)

Arguments

y an EList object or a numeric matrix of log-expression values. Columns are sam-
ples and rows are peptides or proteins. For expTiltByRows or expTiltByRows,
should be a numeric matrix.

10.1093/bioinformatics/btad200
10.1093/bioinformatics/btad200
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dpc.slope slope of detection probability curve.
prior.logfc, sigma.obs

simple standard deviation to be expected between observed values for the same
peptide or protein. Can a single value or vector of length nrow(y). By default
is estimated from the data.

by character value. Should imputation by rows ("rows"), by columns ("columns")
or both ("both")?

... other arguments are not used.

Details

Implements exponential tilting strategy outlined by Li & Smyth (2023). The imputed values are the
expected values of the missing value distribution.

The strategy can be applied to rows or columns. If by="both", the imputated values are an average
of the row and column imputations, weighted inversely by the prediction variances.

Value

An object of the same class as y but with NAs imputed.

References

Li M, Smyth GK (2023). Neither random nor censored: estimating intensity-dependent proba-
bilities for missing values in label-free proteomics. Bioinformatics 39(5), btad200. doi:10.1093/
bioinformatics/btad200

Examples

y <- matrix(rnorm(25),5,5)
y[1,1] <- NA
imputeByExpTilt(y)

observedMomentsCN Observed Distribution Moments from Complete Normal Model

Description

Mean and standard-deviation of the observed data distribution under the complete normal model.

Usage

observedMomentsCN(mean.comp=6, sd.comp=1, dpc=c(-4,0.7))

Arguments

mean.comp mean of complete normal distribution.
sd.comp standard deviation of complete normal distribution.
dpc numeric vector of length 2 giving the DPC intercept and slope.

https://doi.org/10.1093/bioinformatics/btad200
https://doi.org/10.1093/bioinformatics/btad200
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Details

Under the complete normal model, calculate the mean and standard deviation of the observed data
distribution.

Value

A list with compoenents

mean.obs mean of observed data distribution.

sd.obs standard deviation of observed data distribution.

prob.obs unconditional probability that values are observed.

Examples

observedMomentsCN(mean.comp=6, sd.comp=2)

peptides2ProteinBFGS DPC-Quant for One Protein

Description

Convert a matrix of peptide log-expression values for one protein to protein-level expression values
by the DPC-Quant method.

Usage

peptides2ProteinBFGS(y, sigma = 0.5, weights = NULL, dpc = c(-4, 0.7),
prior.mean = 6, prior.sd = 10, prior.logFC = 2,
standard.errors = TRUE, newton.polish = TRUE, start = NULL)

peptides2ProteinNewton(y, sigma = 0.5, weights = NULL, dpc = c(-4, 0.7),
prior.mean = 6, prior.sd = 10, prior.logFC = 2,

standard.errors = TRUE, tol=1e-6, maxit=10, start = NULL, verbose = FALSE)
peptides2ProteinWithoutNAs(y, sigma = 0.5, weights = NULL, dpc = c(-4, 0.7),

prior.mean = 6, prior.sd = 10, prior.logFC = 2)

Arguments

y a numeric matrix of log-expression values. Columns are samples and rows are
peptides or precursors. Typically contains NAs, but NAs are not allowed for
peptides2ProteinWithoutNAs.

sigma standard deviation of peptide-level expression values after allowing for peptide
and sample baseline differences.

weights numeric matrix of same size as y containing positive precision weights. The pre-
cision of the log-expression values is summarized by sigma/sqrt(weights).

dpc numeric vector giving intercept and slope of the detection probability curve
(DPC).
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prior.mean mean of the global prior distribution for protein log-expression values. Repre-
sents the typical average log-expression of a protein.

prior.sd standard deviation of the global prior distribution for protein log-expression val-
ues. Represents the standard deviation of average log-expression across pro-
teins.

prior.logFC standard deviation to be expected between log-expression values for the same
protein.

standard.errors

logical, should standard errors for the protein expression values be returned?

newton.polish logical. If TRUE then one Newton iteration will be done to refine the optimization
after the BFGS algorithm has finished. Ignored if standard.errors=FALSE.

start numeric vector of starting values for the linear model coefficients. Of length
ncol(y)+nrow(y)-1).

tol stopping criterion tolerance for Newton’s method, to be achieved by the average
local slope statistic.

maxit maximum number of iterations for Newton’s method.

verbose logical. If TRUE, progress will be output at each iteration.

Details

Implements the DPC-Quant method, which returns maximum posterior estimates for protein ex-
pression values.

peptides2ProteinBFGS maximizes the posterior using the BFGS algorithm with analytic first
derivatives. The standard errors are computed from analytic second derivatives.

peptides2ProteinNewton maximizes the posterior using Newton’s method.

Value

peptides2ProteinBFGS and peptides2ProteinNewton return a list with components.

protein.expression

numeric vector giving the estimated protein log-expression value for each sam-
ple.

standard.error numeric vector giving standard errors for the protein log-expression values.

value the minimized objective function, minus twice the log-posterior distribution.

peptides2ProteinWithoutNAs returns a numeric vector of protein expression values.

References

Li M (2024). Linear Models and Empirical Bayes Methods for Mass Spectrometry-based Pro-
teomics Data. PhD Thesis, University of Melbourne. http://hdl.handle.net/11343/351600

Smyth GK (2005). Optimization and nonlinear equations. In: Encyclopedia of Biostatistics Second
Edition, Volume 6, P. Armitage and T. Colton (eds.), Wiley, London, pages 3857-3863. https:
//gksmyth.github.io/pubs/OptimNonlinEqnPreprint.pdf

http://hdl.handle.net/11343/351600
https://gksmyth.github.io/pubs/OptimNonlinEqnPreprint.pdf
https://gksmyth.github.io/pubs/OptimNonlinEqnPreprint.pdf
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Examples

y <- matrix(rnorm(12),3,4)
y[1:2,1] <- NA
y[1,2] <- NA
peptides2ProteinBFGS(y)

peptides2Proteins DPC-Quant for Many Proteins

Description

Quantify protein expression values by the DPC-Quant method.

Usage

peptides2Proteins(y, protein.id, sigma = 0.5, dpc = c(-4, 0.7),
prior.mean = 6, prior.sd = 10, prior.logFC = 2,

standard.errors = FALSE, newton.polish = FALSE, verbose = FALSE, chunk = 1000L)

Arguments

y a numeric matrix of log-expression values. Columns are samples and rows are
peptides or precursors.

protein.id protein IDs. Character vector of length nrow(y).

sigma standard deviations of peptide-level expression values. Numeric vector of same
length as unique(protein.id)).

dpc numeric vector giving intercept and slope of detection probability curve (DPC).

prior.mean mean of the global prior distribution for protein log-expression values. Repre-
sents the typical average log-expression of a protein.

prior.sd standard deviation of the global prior distribution for protein log-expression val-
ues. Represents the standard deviation of average log-expression across pro-
teins.

prior.logFC standard deviation to be expected between log-expression values for the same
protein.

standard.errors

logical, should standard errors for the protein expression values be returned?

newton.polish logical. If TRUE then one Newton iteration will be done to refine the optimization
after the BFGS algorithm has finished. Ignored if standard.errors=FALSE.

verbose should progress information be output? If TRUE, then progress information is
output every chunk proteins.

chunk When verbose=TRUE, how often to output progress information. By default,
reports every 1000 proteins.
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Details

Implements the DPC-Quant method, which returns maximum posterior estimates for protein ex-
pression values.

Value

An EList object with a row for each protein.

References

Li M (2024). Linear Models and Empirical Bayes Methods for Mass Spectrometry-based Pro-
teomics Data. PhD Thesis, University of Melbourne. http://hdl.handle.net/11343/351600

Examples

y.peptide <- simProteinDataSet(8,n.groups=1,samples.per.group=4,prop.missing=0.2)
y.protein <- peptides2Proteins(y.peptide$E, y.peptide$genes$Protein)

plotDPC Plot the Detection Probability Curve

Description

Plot the detection probability curve using output from the dpc function.

Usage

plotDPC(dpcfit, add.jitter = TRUE,
point.cex = 0.2, lwd = 2, ylim = c(0, 1),
main = "Detection probability curve", ...)

Arguments

dpcfit object produced by dpc().

add.jitter logical, whether to add jitter to the detected proportion axis.

point.cex relative size of points.

lwd relative line width.

ylim limits of the y-axis.

main main title of plot.

... other arguments are passed to plot.

Value

A plot is produced on the current device. A list with components x and y is also invisibly returned.

http://hdl.handle.net/11343/351600
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Examples

y <- simProteinDataSet(n.peptides=100, n.groups=1)
dpcfit <- dpc(y)
plotDPC(dpcfit)

plotMDSUsingSEs Multidimensional Scaling Plot of Gene Expression Profiles, Using
Standard Errors

Description

Plot samples on a two-dimensional scatterplot so that distances on the plot approximate the typical
z-statistic of differences between the samples.

Usage

plotMDSUsingSEs(y, top = 500, labels = NULL, pch = NULL, cex = 1,
dim.plot = c(1,2), gene.selection = "pairwise",
xlab = NULL, ylab = NULL, plot = TRUE, var.explained = TRUE, ...)

Arguments

y EList produced by dpcQuant or dpcImpute.

top number of top genes used to calculate pairwise distances.

labels character vector of sample names or labels. Defaults to colnames(x).

pch plotting symbol or symbols. See points for possible values. Ignored if labels
is non-NULL.

cex numeric vector of plot symbol expansions.

dim.plot integer vector of length two specifying which principal components should be
plotted.

gene.selection character, "pairwise" to choose the top genes separately for each pairwise
comparison between the samples or "common" to select the same genes for all
comparisons.

xlab title for the x-axis.

ylab title for the y-axis.

plot logical. If TRUE then a plot is created on the current graphics device.

var.explained logical. If TRUE then the percentage variation explained is included in the axis
labels.

... any other arguments are passed to plot, and also to text (if pch is NULL).
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Details

This function uses multidimensional scaling (MDS) to produce a principal coordinate (PCoA) plot
showing the relationships between the expression profiles represented by the columns of x. Dis-
tances on the plot represent the leading z-statistic. The leading log-fold-change between a pair of
samples is defined as the root-mean-square average of the top largest z-statistics between those two
samples.

If pch=NULL, then each sample is represented by a text label, defaulting to the column names of x.
If pch is not NULL, then plotting symbols are used.

See text for possible values for col and cex.

Value

If plot=TRUE or if x is an object of class "MDS", then a plot is created on the current graphics device.

An object of class "MDS" is also invisibly returned. This is a list containing the following compo-
nents:

eigen.values eigen values

eigen.vectors eigen vectors

var.explained proportion of variance explained by each dimension
distance.matrix.squared

numeric matrix of squared pairwise distances between columns of x

dim.plot dimensions plotted

x x-xordinates of plotted points

y y-cordinates of plotted points

gene.selection gene selection method

Author(s)

Gordon Smyth

References

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, and Smyth GK (2015). limma powers dif-
ferential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research
43, e47. http://nar.oxfordjournals.org/content/43/7/e47

See Also

plotMDS in the limma package.

Examples

# See dpcQuant()

http://nar.oxfordjournals.org/content/43/7/e47
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plotProtein Plot protein summary with error bars by DPC-Quant

Description

Plot the log-intensity of a protein summarized by DPC-Quant for each sample with error bars.

Usage

plotProtein(y, protein, col = "black", cex = 2, lwd = 2, ...)

Arguments

y protein-level EList produced by dpcQuant().

protein A vector of length 1. Can be the name of the protein or the numeric index that
locates the protein to plot from rows of y.

col Color for the points and error bars.

cex Size for the points.

lwd Line width for the error bars.

... other arguments are passed to plot().

Details

Plot the sample-wise protein quantification results from dpcQuant() for a specified protein. The
error bars (standard errors) indicate the quantification uncertainty associated with each estimate.
Typically within a dataset, the larger the error bar is, the more missing values there are in the
precursor/peptide-level data for that protein.

Value

A plot is created on the current graphics device. A list with components y and se is also invisibly
returned.

References

Li M (2024). Linear Models and Empirical Bayes Methods for Mass Spectrometry-based Pro-
teomics Data. PhD Thesis, University of Melbourne. http://hdl.handle.net/11343/351600

Examples

y.peptide <- simProteinDataSet()
y.protein <- dpcQuant(y.peptide, "Protein", dpc=c(-4,0.7))
plotProtein(y.protein, protein = "Protein01", col = rep(c("blue", "red"), each = 5))
y.protein$other$standard.error["Protein01",]

http://hdl.handle.net/11343/351600
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proteinResVarFromCompletePeptideData

Protein Residual Variances From Complete Peptide Data

Description

Get protein-wise residual variances by fitting a two-way additive model to the complete (imputed)
peptide data for each protein.

Usage

proteinResVarFromCompletePeptideData(y, protein.id, reorder=FALSE)

Arguments

y a numeric matrix of complete peptide log2-expression values without NAs. Columns
are samples and rows are peptides or precursors.

protein.id a character vector of length nrow(y) giving protein IDs.

reorder does the data need to sorted into protein order? If TRUE, then the rows of y will
be sorted so that peptides for the same protein are in consecutive rows. If FALSE,
the rows are assumed to be already sorted.

Details

This function operates on complete data after imputation of missing values, and is used to get
the sigma hyperparameters required by peptides2Proteins and dpcQuant. The function fits an
additive linear model (~ sample + peptide) to the peptide data for each protein and returns the
residual variances.

Value

A list with components

prior.mean mean of the global prior distribution for protein log-expression values. Repre-
sents the typical average log-expression of a protein.

prior.sd standard deviation of the global prior distribution for protein log-expression val-
ues. Represents the standard deviation of average log-expression across pro-
teins.

prior.logFC standard deviation to be expected between log-expression values for the same
protein across conditions.

sigma protein standard deviations from additive model fitted to peptide log expression
values. Numeric vector of same length as unique(protein.id)).

References

Li M (2024). Linear Models and Empirical Bayes Methods for Mass Spectrometry-based Pro-
teomics Data. PhD Thesis, University of Melbourne. http://hdl.handle.net/11343/351600

http://hdl.handle.net/11343/351600
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See Also

dpcQuant, peptides2Proteins

Examples

y <- simProteinDataSet(8, n.groups=1, samples.per.group=4, prop.missing=0)
proteinResVarFromCompletePeptideData(y$E, y$genes$Protein)

readDIANN Read Peptide-Precursor Intensities From DIA-NN Output

Description

Read DIA-NN Reports.tsv file into EList object.

Usage

readDIANN(file = "Report.tsv", path = NULL, format = "tsv", sep = "\t", log = TRUE,
q.columns = c("Global.Q.Value", "Lib.Q.Value"), q.cutoffs = c(0.01, 0.01))

Arguments

file the name of the file from which the data are to be read. Or it can also be the
data.frame read from the report in the long format, where each row is an obser-
vation.

path character string giving the directory containing the file. Defaults to the current
working directory.

format character string giving the format of the file. Possible values are "tsv" or "par-
quet". Default is "tsv".

sep the field separator character

log logical. If TRUE then intensities will be returned on the log2 scale, otherwise
unlogged with zeros.

q.columns column headings in the DIA-NN output containing Q-values for peptide identi-
fication. Character vector.

q.cutoffs cutoffs to apply to the Q-value columns. Only peptides with values below the
cutoffs will be retained. Numeric vector of same length as q.columns.

Details

DIA-NN (Demichev et al 2020) writes a file in long (data.frame) format, typically called Report.tsv,
containing normalized intensities for peptide precursors. readDIANN reads this file and produces an
object in limma EList or EListRaw format. From version 2.0, DIA-NN returns the main report
in Apache Parquet format (https://github.com/vdemichev/DiaNN/releases). readDIANN can
read the Parquet file directly or, alternatively, one can read the Parquet file into a data.frame, and
use readDIANN to process the long-format data.frame into a limma EList or EListRaw object.

https://github.com/vdemichev/DiaNN/releases
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Value

If log=FALSE, an EListRaw object containing precursor-level unlogged intensities with zeros and
protein annotation. If log=TRUE, an EList object containing precursor-level log2 intensities with
NAs and protein annotation. Rows are peptide-precursors and columns are samples. Peptide pre-
cursor and protein annotation is stored in the ‘genes‘ output component.

References

Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M (2020). DIA-NN: neural networks
and interference correction enable deep proteome coverage in high throughput. Nature Methods
17(1), 41-44.

Examples

## Not run:
ypep <- readDIAN()
ypep <- filterCompoundProteins(ypep)
ypep <- filterNonProteotypicPeptides(ypep)
dpcfit <- dpc(ypep)
yprot <- dpcQuant(ypep, dpc=dpcfit)

## End(Not run)

readSpectronaut Read Peptide-Precursor Intensities From Spectronaut Output

Description

Read Spectronaut Reports.tsv file into EList object.

Usage

readSpectronaut(file = "Report.tsv", path = NULL, sep = "\t", log = TRUE,
run.column = "R.Raw File Name", qty.column = "EG.TotalQuantity",
q.columns = c("EG.Qvalue", "PG.Qvalue"), q.cutoffs = 0.01)

Arguments

file the name of the file from which the data are to be read.

path character string giving the directory containing the file. Defaults to the current
working directory.

sep the field separator character

log logical. If TRUE then intensities will be returned on the log2 scale, otherwise
unlogged with zeros.

run.column column containing run

qty.column column containing intensities
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q.columns column headings in the Spectronaut output containing Q-values for peptide iden-
tification. Character vector.

q.cutoffs cutoffs to apply to the Q-value columns. Only peptides with values below the
cutoffs will be retained. Numeric vector of same length as q.columns.

Details

Spectronaut (https://biognosys.com/software/spectronaut/) writes a file in long (data.frame) format,
typically called Report.tsv, containing normalized intensities for peptide precursors. readSpectronaut
reads this file and produces an object in limma EList or EListRaw format.

Value

If log=FALSE, an EListRaw object containing precursor-level unlogged intensities with zeros and
protein annotation. If log=TRUE, an EList object containing precursor-level log2 intensities with
NAs and protein annotation. Rows are peptide-precursors and columns are samples. Peptide pre-
cursor and protein annotation is stored in the ‘genes‘ output component.

Examples

## Not run:
y <- readSpectronaut()
dpcfit <- dpc(y)

## End(Not run)

removeNARows Remove Entirely NA Rows from Matrix or EList

Description

Remove rows from a matrix that have fewer than a user-specified minimum number of non-missing
observations.

Usage

## Default S3 method:
removeNARows(y, nobs.min = 1, ...)

Arguments

y a matrix or an EList object.
nobs.min minimum number of non-missing observations for rows to be kept.
... other arguments are not currently used.

Details

Produces a new matrix keeping only those rows that have at least the specified number of non-
missing values.
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Value

A matrix or EList the same as y but with entirely or mostly missing rows removed.

Examples

y <- matrix(rnorm(25),5,5)
y[y < -0.5] <- NA
removeNARows(y)

simCompleteDataON Simulate Complete Data From Complete or Observed Normal Models

Description

Simulate a vector complete data together with the associated missing value events, under two dif-
ferent models.

Usage

simCompleteDataCN(n, mean.comp=6, sd.comp=1, dpc=c(-4,0.7))
simCompleteDataON(n, mean.obs=6, sd.obs=1, dpc=c(-4,0.7))

Arguments

n number of values to simulate.

mean.comp mean of complete normal distribution.

sd.comp standard deviation of complete normal distribution.

mean.obs mean of observed normal distribution.

sd.obs standard deviation of observed normal distribution.

dpc numeric vector of length 2 giving the DPC intercept and slope.

Details

These functions simulate a vector of complete log2-expression data and identify which will be
observed and which will be missing. The complete values themselves are all non-missing, but some
will be undetected in a hypothetical real dataset. simCompleteDataCN simulates data according
to the complete normal model (CN), while simCompleteDataON simulates data according to the
observed normal model (ON).

These functions can be used to explore the differences between the complete and observed normal
models. Under the CN model, the complete values (including both observed and unobserved) are
exactly normally distributed, while the subset that are observed are only approximately normal. Un-
der the ON model, the opposite is true. The observed values are exactly normal while the complete
values are only approximately normal.
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Value

A list with compoenents

y.complete vector of complete values.
is.missing vector of TRUE or FALSE values indicating whether each value will be missing.
prob.missing conditional probability given y.complete that each value will be missing.

Examples

# Complete values are only approximately normal under the ON model.
out <- simCompleteDataON(100, mean.obs=6, sd.obs=1)
mean(out$prob.missing)
qqnorm(out$y.complete)
qqline(out$y.complete)

simProteinDataSet Simulate Peptide Data with NAs By Complete Normal Model

Description

Simulate peptide-level log2-expression values from a mass spectrometry experiment.

Usage

simProteinDataSet(n.peptides = 100,
n.groups = 2, samples.per.group = 5, peptides.per.protein = 4,
mu.range = c(2,10), sigma = 0.4, prop.de = 0.2, fc = 2,
dpc.intercept = NULL, dpc.slope = 0.7, prop.missing = 0.4)

Arguments

n.peptides number of peptides (rows of output).
n.groups number of experimental groups (conditions).
samples.per.group

number of samples per group.
peptides.per.protein

number of peptides per protein.
mu.range range of log2-expression values, in terms of expected value per peptide.
sigma standard deviation of log2-expression values for each peptide in each group.
prop.de proportion of differentially expressed proteins.
fc true fold-change for differentially expressed proteins.
dpc.intercept intercept of detection probability curve. Usually determined from dpc.slope

and prop.missing.
dpc.slope slope of detection probability curve.
prop.missing proportion of missing values (at average log2-expression). Ignored if dpc.intercept

is not NULL.
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Details

Simulate peptide-level log2-expression values (log2-intensities) from a mass spectrometry experi-
ment. Values are generated and missing values assigned according to the complete normal model.

Each group of successive peptides is assumed to belong to one protein. If the protein is differentially
expressed (DE), then each peptide belonging to that protein is also DE with the same fold-change.

If dpc.intercept is not specified, then it is chosen to ensure that the proportion of missing values
is equal to prop.missing at the average log2-expression value.

The simulated data is stored in an EList object, the standard limma package data class for log-
expression values. Peptides are ordered by average expected expression level. Some of the more
lowly expressed peptides may be entirely NA, depending on the argument settings.

Value

EList containing simulated log2-expression values with n.peptides rows and n.groups * n.samples.per.group
columns. The EList contains the following components:

E matrix of peptide log2-expression values with NAs.
other$E.complete

matrix of complete log2-expression values without NAs.

genes data.frame with columns Protein and DE.Status giving protein ID and true
DE status.

targets data.frame with column Group giving group identity for each sample.

Examples

y <- simProteinDataSet(n.peptides=10, n.groups=1)
show(y)

voomaLmFitWithImputation

Apply vooma-lmFit Pipeline With Automatic Estimation of Sample
Weights and Block Correlation

Description

Estimate the variance trend, use it to compute observational weights and use the weights to a fit a
linear model. Includes automatic estimation of sample weights and block correlation. Equivalent to
calling vooma(), arrayWeights(), duplicateCorrelation() and lmFit() iteratively.

Usage

voomaLmFitWithImputation(y, design = NULL,
prior.weights = NULL, imputed = NULL, block = NULL,
sample.weights = FALSE, var.design = NULL, var.group = NULL, prior.n = 10,
predictor = NULL, span = NULL, legacy.span = FALSE,
plot = FALSE, save.plot = FALSE, keep.EList = TRUE)
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Arguments

y a numeric matrix, EList object, or any object containing log-expression data
that can be coerced to a matrix. Rows correspond to genes and columns to
samples.

design design matrix with rows corresponding to samples and columns to coefficients
to be estimated. Defaults to the unit vector meaning that samples are treated as
replicates.

prior.weights prior weights. Can be a numeric matrix of individual weights of same dimen-
sions as the counts, or a numeric vector of sample weights with length equal
to ncol(counts), or a numeric vector of gene weights with length equal to
nrow(counts).

imputed logical matrix of the same size as y indicating whether each observation was
entirely imputed.

block vector or factor specifying a blocking variable on the arrays. Has length equal
to ncol(y).

sample.weights logical value. If TRUE then empirical sample quality weights will be estimated.

var.design design matrix for predicting the sample variances. Defaults to the sample-
specific model whereby each sample has a different variance.

var.group vector or factor indicating groups to have different sample weights. This is
another way to specify var.design for groupwise sample weights.

prior.n prior number of genes for squeezing the weights towards equality. Larger values
squeeze the sample weights more strongly towards equality.

predictor precision predictor. Either a column vector of length nrow(y) or a numeric
matrix of the same dimensions as y that predicts the precision of each log-
expression value. Is used as a second covariate together with the log-intensities
to predict the variances and produce the final precision weights.

span width of the smoothing window, as a proportion of the data set. Defaults to a
value between 0.3 and 1 that depends the number of genes (nrow(y)). Equal to
1 if the number of genes is less than or equal to 50, then decreases slowly to 0.3
if the number of genes is very large.

legacy.span logical. If TRUE, then the original default setting will be used for span, which is
slightly smaller than the new default.

plot logical. If TRUE, a plot of the mean-variance trend is displayed.

save.plot logical, should the coordinates and line of the plot be saved in the output?

keep.EList logical. If TRUE, then the EList object containing log-expression values and
observation weights will be saved in the component EList of the output object.

Details

This function is a modification of voomaLmFit in the limma package, to give special treatment to
imputed values. This function gives more accurate estimation of the row-wise variances because
it discounts fitted values and associated residuals that are determined entirely by imputed values
that are all identical. In a regular limma pipeline, such residuals will be structurally zero and will
cause underestimation of the residual variance for that gene. In voomaLmFit, such residuals do
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not contribute to the genewise variances and the genewise residual degrees of freedom (df) are
correspondingly reduced. The principle is the same as for Lun & Smyth (2017), but here the loss of
df is from imputed values instead of from zero counts.

This function is analogous to voomLmFit in the edgeR package but for continuous log-expression
values instead of count data. voomLmFit is a refinement of voom adjusting for loss of residual df
from all zero groups, whereas voomaLmFitWithImputation is a refinement of voomaLmFit adjust-
ing for loss of residual df from all imputed groups. The results from voomaLmFitWithImputation
are similar to those from voomaLmFit, but the df.residual values are equal or smaller and the
sigma values are equal or larger.

voomaLmFitWithImputation is similar to calling vooma() followed by lmFit(), optionally with
arrayWeights() and duplicateCorrelation() to estimate sample weights and block correlation.
The function finishes with lmFit() and returns a fitted model object.

Like vooma, voomaLmFitWithImputation estimates the mean-variance relationship in the data and
uses it to compute appropriate precision weights for each observation. The mean-variance trend
is estimated from gene-level data but is extrapolated back to individual observations to obtain a
precision weight (inverse variance) for each observation. The weights are then used by lmFit() to
adjust for heteroscedasticity.

Like voomLmFit, which corrects for loss of residual degrees of freedom due to entirely zero counts
in a group (Lun & Smyth 2017), voomaLmFitWithImputation corrects for loss of residual degrees
of freedom due to entirely imputed values in a group. This adjustment prevents from the resid-
ual standard deviations from being underestimated due to zero variance between identical imputed
values in a group.

If span=NULL, then an optimal span value is estimated depending on nrow(y). The span is chosen by
chooseLowessSpan with n=nrow(y), small.n=50, min.span=0.3 and power=1/3. If legacy.span
= TRUE, then the chooseLowessSpan arguments are reset to small.n=10, min.span=0.3 and power
= 0.5 to match the settings used by vooma in limma version 3.59.1 and earlier.

If predictor is not NULL, then the variance trend is modeled as a function of both the mean log-
expression and the predictor using a multiple linear regression with the two predictors. In this
case, the predictor is assumed to be some prior predictor of the precision or standard deviation of
each log-expression value. Any predictor that is correlated with the precision of each observation
should give good results. This ability to model the variance trend using two covariates (mean log-
expression and the predictor covariate) was described for the first time by Li (2024).

Sample weights will be estimated using arrayWeights if sample.weights = TRUE or if either
var.design or var.group are non-NULL. An intra-block correlation will be estimated using
duplicateCorrelation if block is non-NULL. In either case, the whole estimation pipeline will
be repeated twice to update the sample weights and/or block correlation.

Value

An MArrayLM object containing linear model fits for each row of data. If sample weights are
estimated, then the output object will include a targets data.frame component with the sample
weights as a column with heading "sample.weights".

If save.plot=TRUE then the output object will include components voom.xy and voom.line. voom.xy
contains the x and y coordinates of the points in the vooma variance-trend plot and voom.line con-
tains the estimated trend line.
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If keep.EList=TRUE, then the output includes component EList with sub-components Elist$E
and EList$weights. If y was an EList object, then the output EList preserves all the components
of y and adds the weights.

Author(s)

Mengbo Li and Gordon Smyth

References

Li M (2024). Linear Models and Empirical Bayes Methods for Mass Spectrometry-based Pro-
teomics Data. PhD Thesis, University of Melbourne. http://hdl.handle.net/11343/351600

Lun ATL, Smyth GK (2017). No counts, no variance: allowing for loss of degrees of freedom
when assessing biological variability from RNA-seq data. Statistical Applications in Genetics and
Molecular Biology 16(2), 83-93. doi:10.1515/sagmb20170010

See Also

vooma, lmFit, voomLmFit (in the edgeR package).

Examples

# Example with a precision predictor
group <- gl(2,4)
design <- model.matrix(~group)
y <- matrix(rnorm(500*8),500,8)
u <- matrix(runif(length(y)),500,8)
yu <- y*u
fit <- voomaLmFitWithImputation(yu,design,plot=TRUE,predictor=u)

# Reproducing vooma plot from output object
fit <- voomaLmFitWithImputation(yu,design,predictor=u,save.plot=TRUE)
do.call(plot,fit$voom.xy)
do.call(lines,fit$voom.line)

ztbinom Zero-Truncated Binomial Distribution

Description

Density and distribution function for the zero-truncated binomial distribution, using the same argu-
ments as for the R stats binomial distribution functions.

Usage

dztbinom(x, size, prob, log = FALSE)
pztbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)

https://doi.org/10.1515/sagmb-2017-0010
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Arguments

x, q vector of quantiles.

p vector of probabilities.

size number of trials (zero or more).

prob probability of success on each trial.

log logical; if TRUE, the log-density is returned.

lower.tail logical; if TRUE, probabilities are P(X<q) otherwise P(X>q).

log.p logical; if TRUE, probabilities are on the log-scale.

Details

These functions perform simmilarly to the R stats functions dbinom and pbinom except for the
zero-truncation.

Value

Output values give density (dztbinom) or cumulative probability (pztbinom) for the zero-truncated
binomial distribution with parameters size and prob. Output is a vector of length equal to the
maximum length of any of the arguments x, q, size or prob. If the first argument is the longest,
then all the attributes of the input argument are preserved on output, for example, a matrix x will
give a matrix on output. Elements of input vectors that are missing will cause the corresponding
elements of the result to be missing, as will non-positive values for size or prob.

Examples

# Compare to binomial
x <- 1:3
dztbinom(x, size=3, prob=0.5)
dbinom(x, size=3, prob=0.5)
pztbinom(x, size=3, prob=0.5)
pbinom(x, size=3, prob=0.5)
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