Package 'structToolbox'

May 2, 2024

Type Package

Title Data processing & analysis tools for Metabolomics and other omics

Version 1.17.0

Description An extensive set of data (pre-)processing and analysis methods and tools for metabolomics and other omics, with a strong emphasis on statistics and machine learning. This toolbox allows the user to build extensive and standardised workflows for data analysis. The methods and tools have been implemented using class-based templates provided by the struct (Statistics in R Using Class-based Templates) package. The toolbox includes pre-processing methods (e.g. signal drift and batch correction, normalisation, missing value imputation and scaling), univariate (e.g. ttest, various forms of ANOVA, Kruskal–Wallis test and more) and multivariate statistical methods (e.g. PCA and PLS, including cross-validation and permutation testing) as well as machine learning methods (e.g. Support Vector Machines). The STATistics Ontology (STATO) has been integrated and implemented to provide standardised definitions for the different methods, inputs and outputs.

License GPL-3

Encoding UTF-8

Collate 'AUC_metric_class.R' 'entity_objects.R' 'DFA_class.R' 'anova_class.R' 'HSD_class.R' 'mixed_effect_class.R' 'HSDEM_class.R' 'MTBLS79_dataset_class.R' 'PCA_class.R' 'scatter_chart_class.R' 'PCA_plotfcns.R' 'PLSR_class.R' 'PLSDA_class.R' 'PLSDA_class.R' 'pLSDA_charts.R' 'as_data_frame_doc.R' 'autoscale_class.R' 'balanced_accuracy_class.R' 'blank_filter_class.R' 'bootstrap_class.R' 'calculate_doc.R' 'chart_plot_doc.R' 'classical_lsq_class.R' 'confounders_clsq_class.R' 'constant_sum_norm_class.R' 'corr_coef_class.R' 'd_ratio_filter_class.R' 'dataset_chart_classes.R' 'split_data_class.R' 'equal_split_class.R' 'factor_barchart_class.R' 'feature_plot_array_class.R' 'feature_profile_class.R' 'filter_by_name_class.R' 'filter_na_count.R' 'filter_smeta_class.R' 'fisher_exact_class.R'

2 Contents

'fold_change_class.R' 'fold_change_int_class.R'
'forward_selection_by_rank_class.R' 'ggplot_theme_pub.R'
'glog_class.R' 'grid_search_1d_class.R' 'hca_class.R'
'kfold_xval_class.R' 'kfold_xval_charts.R' 'knn_impute_class.R'
'kw_rank_sum_class.R' 'linear_model_class.R' 'log_transform.R'
'mean_centre_class.R' 'mean_of_medians.R' 'model_apply_doc.R'
'model_predict_doc.R' 'model_reverse_doc.R' 'model_train_doc.R'
'mv_feature_filter_class.R' 'mv_sample_filter_class.R'
'nroot_transform_class.R' 'oplsr_class.R' 'oplsda_class.R'
'pairs_filter_class.R' 'paretoscale_class.R'
'permutation_test_class.R' 'permute_sample_order_class.R'
'plsda_feature_significance_chart.R' 'pqn_norm_method_class.R' 'prop_na_class.R' 'r_squared_class.R' 'resample_class.R'
'rsd_filter.R' 'run_doc.R' 'sb_corr.R'
'stratified_split_class.R' 'structToolbox.R'
'svm_classifier_class.R' 'tSNE_class.R' 'tic_chart_class.R'
'ttest_class.R' 'vec_norm_class.R' 'wilcox_test_class.R'
Depends R (>= 4.0), struct (>= 1.5.1)
Imports ggplot2, ggthemes, grid, gridExtra, methods, scales, sp, stats
RoxygenNote 7.2.3
Suggests agricolae, BiocFileCache, BiocStyle, car, covr, cowplot,
e1071, emmeans, ggdendro, knitr, magick, nlme, openxlsx, pls,
pmp, reshape2, ropls, rmarkdown, Rtsne, testthat, rappdirs
VignetteBuilder knitr
biocViews WorkflowStep, Metabolomics
URL https://github.com/computational-metabolomics/structToolbox,
https://computational-metabolomics.github.io/structToolbox/
Roxygen $list(markdown = TRUE)$
git_url https://git.bioconductor.org/packages/structToolbox
git_branch devel
git_last_commit beb4b7b
git_last_commit_date 2024-04-30
Repository Bioconductor 3.20
Date/Publication 2024-05-01
Author Gavin Rhys Lloyd [aut, cre] (https://orcid.org/0000-0001-7989-6695), Ralf Johannes Maria Weber [aut]
Maintainer Gavin Rhys Lloyd < g.r.lloyd@bham.ac.uk>
C 4 4
Contents
ANOVA
as_data_frame

Contents 3

AUC	7
autoscale	8
balanced_accuracy	9
blank_filter	
blank_filter_hist	
bootstrap	
calculate, AUC-method	
chart_plot,dfa_scores_plot,DFA-method	
classical_lsq	
compare_dist	
confounders_clsq	
confounders_lsq_barchart	
confounders_lsq_boxplot	
constant_sum_norm	
corr_coef	
DatasetExperiment_boxplot	
DatasetExperiment_dist	
•	
DatasetExperiment_factor_boxplot	
DFA	
dfa_scores_plot	
dratio_filter	
equal_split	
feature_boxplot	
feature_profile	
feature_profile_array	
filter_by_name	
filter_na_count	
filter_smeta	
fisher_exact	
fold_change	
fold_change_int	
fold_change_plot	
forward_selection_by_rank	
fs_line	
glog_opt_plot	52
glog_transform	53
grid_search_1d	
gs_line	56
HCA	57
hca_dendrogram	58
HSD	59
HSDEM	61
kfoldxcv_grid	62
kfoldxcv_metric	
kfold_xval	
knn_impute	
kw n hist	67

4 Contents

	57
linear_model	59
log_transform	70
-	71
– –	72
mixed_effect	73
model_apply,ANOVA,DatasetExperiment-method	74
model_predict,DFA,DatasetExperiment-method	77
model_reverse,autoscale,DatasetExperiment-method	78
model_train,DFA,DatasetExperiment-method	<mark>79</mark>
MTBLS79_DatasetExperiment	31
= 1	82
mv_feature_filter	83
mv_feature_filter_hist	35
mv_histogram	35
	86
	88
nroot_transform	88
	39
	90
OPLSR	91
	92
	93
	94
	95
	96
	97
	98
	99
pca_scree_plot)1
permutation_test)2
permutation_test_plot)3
permute_sample_order)3
PLSDA)4
plsda_feature_importance_plot)6
plsda_predicted_plot)8
plsda_roc_plot)9
PLSR	10
plsr_cook_dist	
plsr_prediction_plot	12
plsr_qq_plot	13
plsr_residual_hist	
pls_regcoeff_plot	
pls_scores_plot	
pls_vip_plot	
pqn_norm	
pqn_norm_hist	
prop na	

ANOVA 5

ANOVA	.	Analysis of Variance	
Index			148
	wilcox_test		
	-		
	tic_chart		
	stratified_split		
	split_data		
	scatter_chart		
		tExperiment, metric-method	
	_		
	•		
	resample		123

Description

Analysis of Variance (ANOVA) is a univariate method used to analyse the difference among group means. Multiple test corrected p-values are computed to indicate significance for each feature.

Usage

```
ANOVA(alpha = 0.05, mtc = "fdr", formula, ss_type = "III", ...)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc (character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

6 ANOVA

```
formula (formula) A symbolic description of the model to be fitted.

ss_type (character) ANOVA sum of squares. Allowed values are limited to the following:

• "I": Type I sum of squares.

• "III": Type III sum of squares.

• "III": Type III sum of squares.

The default is "III".

Additional slots and values passed to struct_class.
```

Details

This object makes use of functionality from the following packages:

• car

Value

A ANOVA object with the following output slots:

```
f_statistic (data.frame) The value of the calculated statistic.
p_value (data.frame) The probability of observing the calculated statistic if the null hypothesis is true.
significant (data.frame) True/False indicating whether the p-value computed for each variable is less than the threshold.
```

Inheritance

A ANOVA object inherits the following struct classes:

```
[ANOVA] » [model] » [struct_class]
```

References

```
Fox J, Weisberg S (2019). An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
```

Examples

as_data_frame 7

as_data_frame

Convert to data.frame

Description

Convert the outputs of the input model into a data.frame.

Usage

```
## S4 method for signature 'filter_na_count'
as_data_frame(M)

## S4 method for signature 'ttest'
as_data_frame(M)

## S4 method for signature 'wilcox_test'
as_data_frame(M)
```

Arguments

М

a model object

Value

A data.frame of model outputs

Examples

```
D = iris_DatasetExperiment()
M = filter_na_count(threshold=50,factor_name='Species')
M= model_apply(M,D)
df = as_data_frame(M)
```

AUC

Area under ROC curve

Description

The area under the ROC curve of a classifier is estimated using the trapezoid method.

Usage

```
AUC(...)
```

Arguments

... Additional slots and values passed to struct_class.

8 autoscale

Value

A AUC object. This object has no output slots.

Inheritance

A AUC object inherits the following struct classes:

```
[AUC] » [metric] » [struct_class]
```

Examples

autoscale

Autoscaling

Description

Each variable/feature is mean centred and scaled by the standard deviation. The transformed variables have zero-mean and unit-variance.

Usage

```
autoscale(mode = "data", ...)
```

Arguments

mode

(character) Mode of action. Allowed values are limited to the following:

- "data": Autoscaling is applied to the data matrix only.
- "sample_meta": Autoscaling is applied to the sample_meta data only.
- "both": Autoscaling is applied to both the data matrix and the meta data.

The default is "data".

... Additional slots and values passed to struct_class.

balanced_accuracy 9

Value

A autoscale object with the following output slots:

```
autoscaled (DatasetExperiment)
mean_data (numeric)
sd_data (numeric)
mean_sample_meta (numeric)
sd_sample_meta (numeric)
```

Inheritance

A autoscale object inherits the following struct classes:

```
[autoscale] » [model] » [struct_class]
```

Examples

balanced_accuracy

Balanced Accuracy

Description

Balanced Accuracy is the average proportion of correctly classified samples across all groups.

Usage

```
balanced_accuracy(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A balanced_accuracy object. This object has no output slots.

10 blank_filter

Inheritance

A balanced_accuracy object inherits the following struct classes:

```
[balanced_accuracy] » [metric] » [struct_class]
```

Examples

blank_filter

Blank filter

Description

A blank filter filters features by comparing the median intensity of blank samples to the median intensity of samples. Features where the relative intensity (fold change) is not large when compared to the blank are removed. The number of times a feature is detected across all blank samples may also be considered. If the feature is not detected in a high enough proportion of the blanks then it is not removed.

Usage

```
blank_filter(
  fold_change = 20,
  blank_label = "blank",
  qc_label = "QC",
  factor_name,
  fraction_in_blank = 0,
  ...
)
```

Arguments

fold_change (numeric) Features with fold change less than this value are removed. The default is 20.

blank_label (character) The label used to identify blank samples. The default is "blank".

qc_label (character, NULL) The label used to identify QC samples. If set to NULL then the median of the samples is used. The default is "QC".

factor_name (character) The name of a sample-meta column to use.

blank_filter 11

```
fraction_in_blank
```

(numeric) Features present in less than this proportion of the blanks are not considered for removal. The default is 0.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

pmp

Value

A blank_filter object with the following output slots:

```
filtered (DatasetExperiment) A DatasetExperiment object containing the filtered data. flags (data.frame) A flag indicating whether the feature was rejected or not.
```

Inheritance

A blank_filter object inherits the following struct classes:

```
[blank_filter] » [model] » [struct_class]
```

References

Jankevics A, Lloyd GR, Weber RJM (2023). *pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets*. doi:10.18129/B9.bioc.pmp https://doi.org/10.18129/B9.bioc.pmp, R package version 1.14.0, https://bioconductor.org/packages/pmp.

Examples

12 bootstrap

blank_filter_hist

Histogram of blank filter fold changes

Description

A histogram of the calculated fold changes for the blank filter (median samples divided by median blanks)

Usage

```
blank_filter_hist(...)
```

Arguments

.. Additional slots and values passed to struct_class.

Value

A blank_filter_hist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A blank_filter_hist object inherits the following struct classes:

```
[blank_filter_hist] » [chart] » [struct_class]
```

Examples

```
M = blank_filter_hist()
C = blank_filter_hist()
```

bootstrap

Bootstrap resampling

Description

In bootstrap resampling a subset of samples is selected at random with replacement to form a training set. Any sample not selected for training is included in the test set. This process is repeated many times, and performance metrics are computed for each repetition.

```
bootstrap(number_of_repetitions = 100, collect, ...)
```

calculate,AUC-method 13

Arguments

Value

A bootstrap object with the following output slots:

```
results (data.frame)
metric (data.frame)
collected (logical, list)
```

Inheritance

A bootstrap object inherits the following struct classes:

```
[bootstrap] » [resampler] » [iterator] » [struct_class]
```

Examples

 ${\tt calculate}, {\tt AUC-method} \quad \textit{Calculate metric}$

Description

Calculate metric

```
## S4 method for signature 'AUC'
calculate(obj, Y, Yhat)

## S4 method for signature 'balanced_accuracy'
calculate(obj, Y, Yhat)

## S4 method for signature 'r_squared'
calculate(obj, Y, Yhat)
```

Arguments

obj a metric object

Y the true values/group labels
Yhat the predicted values/group labels

Value

a modified metric object

Examples

```
MET = metric()
calculate(MET)
```

```
chart\_plot, dfa\_scores\_plot, DFA-method \\ chart\_plot \ method
```

Description

Plots a chart object

```
## S4 method for signature 'dfa_scores_plot,DFA'
chart_plot(obj, dobj)

## S4 method for signature 'scatter_chart,DatasetExperiment'
chart_plot(obj, dobj)

## S4 method for signature 'pca_correlation_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_scores_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_biplot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_loadings_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_scree_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_scree_plot,PCA'
chart_plot(obj, dobj)

## S4 method for signature 'pca_dstat_plot,PCA'
```

```
chart_plot(obj, dobj)
## S4 method for signature 'plsr_prediction_plot,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'plsr_residual_hist,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'plsr_qq_plot,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'plsr_cook_dist,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'pls_scores_plot,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'plsda_predicted_plot,PLSDA'
chart_plot(obj, dobj)
## S4 method for signature 'plsda_roc_plot,PLSDA'
chart_plot(obj, dobj)
## S4 method for signature 'pls_vip_plot,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'pls_regcoeff_plot,PLSR'
chart_plot(obj, dobj)
## S4 method for signature 'blank_filter_hist,blank_filter'
chart_plot(obj, dobj)
## S4 method for signature 'confounders_lsq_barchart,confounders_clsq'
chart_plot(obj, dobj)
## S4 method for signature 'confounders_lsq_boxplot,confounders_clsq'
chart_plot(obj, dobj)
## S4 method for signature 'feature_boxplot,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'mv_histogram, DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'mv_boxplot,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'DatasetExperiment_dist,DatasetExperiment'
```

```
chart_plot(obj, dobj)
## S4 method for signature 'DatasetExperiment_boxplot,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'compare_dist,DatasetExperiment'
chart_plot(obj, dobj, eobj)
## S4 method for signature 'DatasetExperiment_heatmap,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'DatasetExperiment_factor_boxplot,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'feature_profile_array,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'feature_profile,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'fold_change_plot,fold_change'
chart_plot(obj, dobj)
## S4 method for signature 'fs_line,forward_selection_by_rank'
chart_plot(obj, dobj)
## S4 method for signature 'glog_opt_plot,glog_transform'
chart_plot(obj, dobj, gobj)
## S4 method for signature 'gs_line,grid_search_1d'
chart_plot(obj, dobj)
## S4 method for signature 'hca_dendrogram, HCA'
chart_plot(obj, dobj)
## S4 method for signature 'kfoldxcv_grid,kfold_xval'
chart_plot(obj, dobj)
## S4 method for signature 'kfoldxcv_metric,kfold_xval'
chart_plot(obj, dobj)
## S4 method for signature 'kw_p_hist,kw_rank_sum'
chart_plot(obj, dobj)
## S4 method for signature 'mv_feature_filter_hist,mv_feature_filter'
chart_plot(obj, dobj)
## S4 method for signature 'mv_sample_filter_hist,mv_sample_filter'
```

```
chart_plot(obj, dobj)
## S4 method for signature 'permutation_test_plot,permutation_test'
chart_plot(obj, dobj)
## S4 method for signature 'plsda_feature_importance_plot,PLSDA'
chart_plot(obj, dobj)
## S4 method for signature 'pqn_norm_hist,pqn_norm'
chart_plot(obj, dobj)
## S4 method for signature 'resample_chart,resample'
chart_plot(obj, dobj)
## S4 method for signature 'rsd_filter_hist,rsd_filter'
chart_plot(obj, dobj)
## S4 method for signature 'feature_profile,sb_corr'
chart_plot(obj, dobj, gobj)
## S4 method for signature 'svm_plot_2d,SVM'
chart_plot(obj, dobj, gobj)
## S4 method for signature 'tSNE_scatter,tSNE'
chart_plot(obj, dobj)
## S4 method for signature 'tic_chart,DatasetExperiment'
chart_plot(obj, dobj)
## S4 method for signature 'wilcox_p_hist,wilcox_test'
chart_plot(obj, dobj)
```

Arguments

obj	a chart object
dobj	a struct object
eobj	a second DatasetExperiment object to compare with the first
gobj	The DatasetExperiment object before signal correction was applied.

Value

a plot object

Examples

```
C = example_chart()
chart_plot(C,iris_DatasetExperiment())
```

18 classical_lsq

classical_lsq

Univariate Classical Least Squares Regression

Description

In univariate classical least squares regression a line is fitted between each feature/variable and a response variable. The fitted line minimises the sum of squared differences between the true response and the predicted response. The coefficients (offset, gradient) of the fit can be tested for significance.

Usage

```
classical_lsq(alpha = 0.05, mtc = "fdr", factor_names, intercept = TRUE, ...)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc (character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

factor_names

(character, list) The column names to regress against. If a character vector then the same list is used of all features. If a list of character vectors is provided it is assumed there is a different set of columns for each feature.

intercept

adj_r_squared

(logical) Model intercept. Allowed values are limited to the following:

- "TRUE": An intercept term is included in the model.
- "FALSE": An intercept term is not included in the model.

(data.frame) The value of Adjusted R Squared for the fitted model.

The default is TRUE.

... Additional slots and values passed to struct_class.

Value

A classical_lsq object with the following output slots:

coefficients (data.frame) The regression coefficients for each term in the model.

p_value (data.frame) The probability of observing the calculated statistic if the null hypothesis is true.

significant (data.frame) True/False indicating whether the p-value computed for each variable is less than the threshold (data.frame) The value of R Squared for the fitted model.

compare_dist 19

Inheritance

A classical_lsq object inherits the following struct classes:

```
[classical_lsq] » [model] » [struct_class]
```

Examples

```
M = classical_lsq(
    alpha = 0.05,
    mtc = "fdr",
    factor_names = "V1",
    intercept = FALSE)

D = iris_DatasetExperiment()
M = classical_lsq(factor_names = 'Species')
M = model_apply(M,D)
```

compare_dist

Compare distributions

Description

Histograms and boxplots computed across samples and features are used to visually compare two datasets e.g. before and after filtering and/or normalisation.

Usage

```
compare_dist(factor_name, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.
```

Value

A compare_dist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A compare_dist object inherits the following struct classes:

```
[compare_dist] » [chart] » [struct_class]
```

20 confounders_clsq

Examples

confounders_clsq

Check for confounding factors

Description

Univariate least squares regression models are used to compare models with and without potential confounding factors included. The change in coefficients (delta) is then computed for each potential confounding factor. Factors with a large delta are said to be having a large impact on the model and are therefore confounding. p-values are computed for models with confounders included to reduce potential false positives. Only suitable for main factors with 2 levels.

Usage

```
confounders_clsq(
  alpha = 0.05,
  mtc = "fdr",
  factor_name,
  confounding_factors,
  threshold = 0.15,
  ...
)
```

Arguments

alpha

(numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc

(character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

factor_name

(character) The name of the main factor with which other factors may be confounding.

confounding_factors

(character) The name(s) of factor(s) that are potential confounding factors.

threshold (numeric) Factors with a delta greater than the threshold are considered to be confounding. The default is 0.15.

... Additional slots and values passed to struct_class.

Value

A confounders_clsq object with the following output slots:

```
coefficients (data.frame)
p_value (data.frame)
significant (data.frame)
percent_change (data.frame)
potential_confounders (list)
```

Inheritance

A confounders_clsq object inherits the following struct classes:

```
[confounders_clsq] » [model] » [struct_class]
```

Examples

confounders_lsq_barchart

Confounding factor relative change barchart

Description

A barchart of the relative change (delta) in regression coefficient when potential confounding factors are included, and excluded, from the model. Factors with a large delta are considered to be confounding factors.

Usage

```
confounders_lsq_barchart(feature_to_plot, threshold = 10, ...)
```

Arguments

Value

A confounders_lsq_barchart object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A confounders_lsq_barchart object inherits the following struct classes:

```
[confounders_lsq_barchart] » [chart] » [struct_class]
```

Examples

```
M = confounders_lsq_barchart(
    feature_to_plot = 1,
    threshold = 10)

D = MTBLS79_DatasetExperiment()
M = filter_by_name(mode='include',dimension='variable',
        names=colnames(D$data)[1:10]) + # first 10 features
    filter_smeta(mode='exclude',levels='QC',
        factor_name='Class') + # reduce to two group comparison
    confounders_clsq(factor_name = 'Class',
        confounding_factors=c('run_order','Batch'))

M = model_apply(M,D)
C = C=confounders_lsq_barchart(feature_to_plot=1,threshold=15)
    chart_plot(C,M[3])
```

confounders_lsq_boxplot

Confounding factor relative change boxplot

Description

A boxplot of the relative change (delta) in regression coefficient when potential confounding factors are included, and excluded, from the model. Factors with a large delta are considered to be confounding factors.

constant_sum_norm 23

Usage

```
confounders_lsq_boxplot(threshold = 10, ...)
```

Arguments

threshold (numeric) A horizontal line is plotted to indicate the threshold. The default is 10.

... Additional slots and values passed to struct_class.

Value

A confounders_lsq_boxplot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A confounders_lsq_boxplot object inherits the following struct classes:

```
[confounders_lsq_boxplot] » [chart] » [struct_class]
```

Examples

constant_sum_norm

Normalisation to constant sum

Description

Each sample is normalised such that the total signal is equal to one (or a scaling factor if specified).

```
constant_sum_norm(scaling_factor = 1, ...)
```

24 corr_coef

Arguments

```
scaling_factor (numeric) The scaling factor applied after normalisation. The default is 1.
```

... Additional slots and values passed to struct_class.

Value

A constant_sum_norm object with the following output slots:

```
normalised (DatasetExperiment) A DatasetExperiment object containing the normalised data. coeff (data.frame) The sum of each row, used to normalise the samples.
```

Inheritance

A constant_sum_norm object inherits the following struct classes:

```
[constant_sum_norm] » [model] » [struct_class]
```

Examples

corr_coef

Correlation coefficient

Description

The correlation between features and a set of continuous factor are calculated. Multiple-test corrected p-values are used to indicate whether the computed coefficients may have occurred by chance.

Usage

```
corr_coef(alpha = 0.05, mtc = "fdr", factor_names, method = "spearman", ...)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc (character) Multiple test correction method. Allowed values are limited to the

following:

corr_coef 25

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

factor_names

(character) The name of sample meta column(s) to use.

method

(character) Type of correlation. Allowed values are limited to the following:

- "kendall": Kendall's tau is computed.
- "pearson": Pearson product moment correlation is computed.
- "spearman": Spearman's rho statistic is computed.

The default is "spearman".

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• stats

Value

A corr_coef object with the following output slots:

```
coeff (data.frame) The value of the calculate statistics which is converted to a p-value when compared to a t-distribution of the calculated statistic if the null hypothesis is true.

significant (data.frame) True/False indicating whether the p-value computed for each variable is less than the threshold.
```

Inheritance

A corr_coef object inherits the following struct classes:

```
[corr_coef] » [model] » [struct_class]
```

References

R Core Team (2023). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Examples

```
M = corr_coef(
    alpha = 0.05,
    mtc = "fdr",
    factor_names = "V1",
    method = "spearman")

D = MTBLS79_DatasetExperiment(filtered=TRUE)
```

```
# subset for this example
D = D[,1:10]

# convert to numeric for this example
D$sample_meta$sample_order=as.numeric(D$sample_meta$run_order)
D$sample_meta$sample_rep=as.numeric(D$sample_meta$Sample_Rep)

M = corr_coef(factor_names=c('sample_order','sample_rep'))
M = model_apply(M,D)
```

DatasetExperiment_boxplot

Feature distribution histogram

Description

A boxplot to visualise the distribution of values within a subset of features.

Usage

```
DatasetExperiment_boxplot(
  factor_name,
  by_sample = TRUE,
  per_class = TRUE,
  number = 50,
  ...
)
```

Arguments

factor_name

(character) The name of a sample-meta column to use.

by_sample

(logical) Plot by sample. Allowed values are limited to the following:

- "TRUE": The data is plotted across features for a subset of samples.
- "FALSE": The data is plotted across samples for a subset of features.

The default is TRUE.

per_class

(logical) Plot per class. Allowed values are limited to the following:

- "TRUE": The data is plotted for each class.
- "FALSE": The data is plotted for all samples.

The default is TRUE.

number

(numeric, integer) The number of features/samples plotted. The default is 50.

. . .

Additional slots and values passed to struct_class.

Value

A DatasetExperiment_boxplot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

```
struct object
```

Inheritance

A DatasetExperiment_boxplot object inherits the following struct classes:

```
[DatasetExperiment_boxplot] » [chart] » [struct_class]
```

Examples

```
M = DatasetExperiment_boxplot(
    factor_name = "V1",
    by_sample = FALSE,
    per_class = FALSE,
    number = 50)

D = MTBLS79_DatasetExperiment()
C = DatasetExperiment_boxplot(factor_name='Class',number=10,per_class=FALSE)
chart_plot(C,D)
```

DatasetExperiment_dist

Feature distribution histogram

Description

A histogram to visualise the distribution of values within features.

Usage

```
DatasetExperiment_dist(factor_name, per_class = TRUE, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.

per_class (logical) Plot per class. Allowed values are limited to the following:

• "TRUE": The distributions are plotted for each class.

• "FALSE": The distribution is plotted for all samples.

The default is TRUE.
```

... Additional slots and values passed to struct_class.

Value

A DatasetExperiment_dist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A DatasetExperiment_dist object inherits the following struct classes:

```
[DatasetExperiment_dist] » [chart] » [struct_class]
```

Examples

```
M = DatasetExperiment_dist(
    factor_name = "V1",
    per_class = FALSE)

D = MTBLS79_DatasetExperiment()
C = DatasetExperiment_dist(factor_name='Class')
chart_plot(C,D)
```

 ${\tt DatasetExperiment_factor_boxplot} \\ Factor\ boxplot$

Description

Boxplot for a feature to visualise the distribution of values within each group

Usage

```
DatasetExperiment_factor_boxplot(feature_to_plot, factor_names, ...)
```

Arguments

Value

A DatasetExperiment_factor_boxplot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A DatasetExperiment_factor_boxplot object inherits the following struct classes:

```
[DatasetExperiment_factor_boxplot] » [chart] » [struct_class]
```

Examples

```
M = DatasetExperiment_factor_boxplot(
    factor_names = "V1",
    feature_to_plot = "V1")

D = iris_DatasetExperiment()
C = DatasetExperiment_factor_boxplot(factor_names='Species',feature_to_plot='Petal.Width')
chart_plot(C,D)
```

DatasetExperiment_heatmap

DatasetExperiment heatmap

Description

A heatmap to visualise the measured values in a data matrix.

Usage

```
DatasetExperiment_heatmap(na_colour = "#FF00E4", ...)
```

Arguments

```
na_colour (character) The hex colour code used to plot missing values. The default is "#FF00E4".

Additional slots and values passed to struct_class.
```

Details

This object makes use of functionality from the following packages:

• reshape2

Value

A DatasetExperiment_heatmap object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A DatasetExperiment_heatmap object inherits the following struct classes:

```
[DatasetExperiment_heatmap] » [chart] » [struct_class]
```

References

```
Wickham H (2007). "Reshaping Data with the reshape Package." Journal of Statistical Software, 21(12), 1-20. http://www.jstatsoft.org/v21/i12/.
```

30 DFA

Examples

DFA

Discriminant Factor Analysis

Description

Discriminant Factor Analysis (DFA) is a supervised classification method. Using a linear combination of the input variables, DFA finds new orthogonal axes (canonical values) to minimize the variance within each given class and maximize variance between classes.

Usage

```
DFA(factor_name, number_components = 2, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.

number_components

(numeric, integer) The number of DFA components calculated. The default is 2.

Additional slots and values passed to struct_class.
```

Value

A DFA object with the following output slots:

```
scores (DatasetExperiment)
loadings (data.frame)
eigenvalues (data.frame)
that (DatasetExperiment)
```

Inheritance

A DFA object inherits the following struct classes:

```
[DFA] » [model] » [struct_class]
```

References

Manly B (1986). Multivariate Statistical Methods: A Primer. Chapman and Hall, Boca Raton.

dfa_scores_plot 31

Examples

dfa_scores_plot

DFA scores plot

Description

A scatter plot of the selected DFA components.

Usage

```
dfa_scores_plot(
  components = c(1, 2),
  points_to_label = "none",
  factor_name,
  ellipse = "all",
  label_filter = character(0),
  label_factor = "rownames",
  label_size = 3.88,
  ...
)
```

Arguments

components (numeric) The components selected for plotting. The default is c(1, 2). points_to_label

(character) Points to label. Allowed values are limited to the following:

- "none": No samples labels are displayed.
- "all": The labels for all samples are displayed.
- "outliers": Labels for for potential outlier samples are displayed.

The default is "none".

factor_name
ellipse

(character) The name of a sample-meta column to use.

(character) Plot ellipses. Allowed values are limited to the following:

- "all": Hotelling T2 ellipses (p=0.95) are plotted for all groups and all samples.
- "group": Hotelling T2 ellipses (p=0.95) are plotted for all groups.
- "none": Ellipses are not included on the plot.

32 dfa_scores_plot

"sample": A Hotelling T2 ellipse (p=0.95) is plotted for all samples (ignoring group).
 The default is "all".
 (character) Labels are only plotted for the named groups. If zero-length then all

label_factor (character) The column name of sample_meta to use for labelling samples on

groups are included. The default is character(0).

the plot. "rownames" will use the row names from sample_meta. The default is

"rownames".

label_size (numeric) The text size of labels. Note this is not in Font Units. The default is

3.88.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• scales

label_filter

• ggplot2

Value

A dfa_scores_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A dfa_scores_plot object inherits the following struct classes:

```
[dfa_scores_plot] » [chart] » [struct_class]
```

References

Wickham H, Pedersen T, Seidel D (2023). *scales: Scale Functions for Visualization*. R package version 1.3.0, https://CRAN.R-project.org/package=scales.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Examples

```
M = dfa_scores_plot(
    components = c(1, 2),
    points_to_label = "none",
    factor_name = "V1",
    ellipse = "all",
    label_filter = character(0),
    label_factor = "rownames",
    label_size = 3.88)
```

dratio_filter 33

```
D = iris_DatasetExperiment()
M = mean_centre() + DFA(factor_name='Species')
M = model_apply(M,D)
C = dfa_scores_plot(factor_name = 'Species')
chart_plot(C,M[2])
```

dratio_filter

Dispersion ratio filter

Description

The dispersion ratio (d-ratio) compares the standard deviation (or non-parametric equivalent) of the Quality Control (QC) samples relative to the standard deviation (or non-parametric equivalent) of the samples for each feature. If the d-ratio is greater than a predefined threshold then the observed sample variance could be due to technical variance and the feature is removed.

Usage

```
dratio_filter(
   threshold = 20,
   qc_label = "QC",
   factor_name,
   method = "ratio",
   dispersion = "sd",
   ...
)
```

Arguments

threshold

(numeric) The threshold above which features are removed. The default is 20.

qc_label

(character) The label used to identify QC samples. The default is "QC".

factor_name

(character) The name of a sample-meta column to use.

method

(character) dratio method. Allowed values are limited to the following:

- "ratio": Dispersion of the QCs divided by the dispersion of the samples. Corresponds to Eq 4 in Broadhurst et al (2018).
- "euclidean": Dispersion of the QCs divided by the euclidean length of the total dispersion. Total dispersion is estimated from the QC and Sample dispersion by assuming that they are orthogonal. Corresponds to Eq 5 in Broadhurst et al (2018).

The default is "ratio".

dispersion

(character) Dispersion method. Allowed values are limited to the following:

• "sd": Dispersion is estimated using the standard deviation.

34 equal_split

• "mad": Dispersion is estimated using the median absolute deviation.

The default is "sd".

. . Additional slots and values passed to struct_class.

Value

A dratio_filter object with the following output slots:

```
filtered (DatasetExperiment) A DatasetExperiment object containing the filtered data.

flags (data.frame) Flag indicating whether the feature was rejected by the filter or not.

d_ratio (data.frame)
```

Inheritance

A dratio_filter object inherits the following struct classes:

```
[dratio_filter] » [model] » [struct_class]
```

References

Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB (2018). "Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies." *Metabolomics*, 14(6).

Examples

equal_split

Equal group sized sampling

Description

Samples are randomly chosen from each level such that the training set has equal numbers of samples for all levels. The number of samples is based on the input proportion and the smallest group size.

feature_boxplot 35

Usage

```
equal_split(p_train = 1, factor_name, ...)
```

Arguments

```
p_train (numeric) The proportion of samples selected for the training set. The default is 1.

factor_name (character) The name of a sample-meta column to use.

Additional slots and values passed to struct_class.
```

Value

A equal_split object with the following output slots:

```
training (DatasetExperiment) A DatasetExperiment object containing samples selected for the training set. testing (DatasetExperiment) A DatasetExperiment object containing samples selected for the testing set.
```

Inheritance

```
A equal_split object inherits the following struct classes:
```

```
[equal_split] » [split_data] » [model] » [struct_class]
```

Examples

```
M = equal_split(
    factor_name = "V1",
    p_train = 0.75)

D = iris_DatasetExperiment()
M = equal_split(factor_name='Species')
M = model_apply(M,D)
```

feature_boxplot

Feature boxplot

Description

A boxplot to visualise the distribution of values within a feature.

36 feature_boxplot

Usage

```
feature_boxplot(
  label_outliers = TRUE,
  feature_to_plot,
  factor_name,
  show_counts = TRUE,
  style = "boxplot",
  jitter = FALSE,
  fill = FALSE,
  ...
)
```

Arguments

label_outliers (logical) Label outliers. Allowed values are limited to the following:

- "TRUE": The index for outlier samples is included on the plot.
- "FALSE": No labels are displayed.

The default is TRUE.

feature_to_plot

(character, numeric, integer) The column name of the plotted feature.

factor_name

(character) The name of a sample-meta column to use.

show_counts

(logical) Show counts. Allowed values are limited to the following:

- "TRUE": The number of samples for each box is displayed.
- "FALSE": The number of samples for each box is not displayed.

The default is TRUE.

style

(character) Plot style. Allowed values are limited to the following:

- "boxplot": Boxplot style.
- "violin": Violon plot style.

The default is "boxplot".

jitter

(logical) Include points plotted with added jitter. The default is FALSE.

fill

(logical) Block fill the boxes or violins with the group colour. The default is FALSE.

Additional slots and values passed to struct_class.

Value

A feature_boxplot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

feature_profile 37

Inheritance

A feature_boxplot object inherits the following struct classes:

```
[feature_boxplot] » [chart] » [struct_class]
```

Examples

```
M = feature_boxplot(
    label_outliers = FALSE,
    feature_to_plot = "V1",
    factor_name = "V1",
    show_counts = FALSE,
    style = "boxplot",
    jitter = FALSE,
    fill = FALSE)

D = MTBLS79_DatasetExperiment
C = feature_boxplot(factor_name='Species',feature_to_plot='Petal.Width')
chart_plot(C,D)
```

feature_profile

Feature profile

Description

A plot visualising the change in intensity of a feature with a continuous variable such as time, dose, or run order.

Usage

```
feature_profile(
  run_order,
  qc_label,
  qc_column,
  colour_by,
  feature_to_plot,
  plot_sd = FALSE,
  ...
)
```

Arguments

```
run_order (character) The sample-meta column name containing run order.

qc_label (character) The label used to identify QC samples.

qc_column (character) The sample-meta column name containing the labels used to identify QC samples.

colour_by (character) The sample-meta column name to used to colour the plot.
```

38 feature_profile_array

```
feature_to_plot
```

(numeric, character, integer) The name or column id of the plotted feature.

plot_sd

(logical) Plot standard deviation. Allowed values are limited to the following:

- "TRUE": Standard deviation of samples and QCs are included on the plot.
- "FALSE": Standard deviation is not plotted.

The default is FALSE.

... Additional slots and values passed to struct_class.

Value

A feature_profile object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A feature_profile object inherits the following struct classes:

```
[feature_profile] » [chart] » [struct_class]
```

Examples

```
M = feature_profile(
    run_order = character(0),
    qc_label = character(0),
    qc_column = character(0),
    colour_by = character(0),
    feature_to_plot = numeric(0),
    plot_sd = FALSE)

D = MTBLS79_DatasetExperiment()
C = feature_profile(run_order='run_order',
    qc_label='QC',
    qc_column='Class',
    colour_by='Class',
    feature_to_plot=1)
chart_plot(C,D)
```

feature_profile_array Feature profile

Description

A plot visualising the change in intensity of a feature with a continuous variable such as time, dose, or run order.

feature_profile_array 39

Usage

```
feature_profile_array(
  run_order,
  qc_label,
  qc_column,
  colour_by,
  feature_to_plot,
  nrow = 5,
  log = TRUE,
  ...
)
```

Arguments

run order (character) The sample-meta column name containing run order. qc_label (character) The label used to identify QC samples. qc_column (character) The sample-meta column name containing the labels used to identify QC samples. (character) The sample-meta column name to used to colour the plot. colour_by feature_to_plot (numeric, character, integer) The name or column id of the plotted feature. (numeric, integer) The number of rows in the plot. The default is 5. nrow (logical) Log transform. Allowed values are limited to the following: log • "TRUE": The data is log tranformed before plotting. • "FALSE": The data is not transformed before plotting. The default is TRUE. Additional slots and values passed to struct_class.

Value

A feature_profile_array object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

```
A feature_profile_array object inherits the following struct classes:
```

```
[feature_profile_array] » [chart] » [struct_class]
```

40 filter_by_name

```
qc_column = character(0),
    colour_by = character(0),
    feature_to_plot = numeric(0),
    nrow = 1,
    log = FALSE)

D = MTBLS79_DatasetExperiment()
C = feature_profile_array(
    run_order='run_order',
    qc_label='QC',
    qc_column='Class',
    colour_by='Class',
    feature_to_plot=1:3,
    nrow=1,
    log=TRUE)
chart_plot(C,D)
```

filter_by_name

Filter by name

Description

Filter samples/variables by row/column name, index or logicals.

Usage

```
filter_by_name(mode = "exclude", dimension = "sample", names, ...)
```

Arguments

mode	(character) The filtering mode controls whether samples/features are mode="included" or mode="excluded" based on their name. The default is "exclude".
dimension	(character) The filtering dimensions controls whether dimension="sample" or dimension="variable" are filtered based on their name. The default is "sample".
names	(character, numeric, logical) The name of features/samples to be filtered. Must be an exact match. Can also provide indexes (numeric) or logical.
	Additional slots and values passed to struct_class.

Value

```
A filter_by_name object with the following output slots:
```

```
filtered (DatasetExperiment)
```

Inheritance

```
A filter_by_name object inherits the following struct classes:
```

```
[filter_by_name] » [model] » [struct_class]
```

filter_na_count 41

Examples

```
M = filter_by_name(
    mode = "exclude",
    dimension = "sample",
    names = character(0))

D = MTBLS79_DatasetExperiment()
M = filter_by_name(mode='exclude',dimension='variable',names=c(1,2,3))
M = model_apply(M,D)
```

filter_na_count

Minimum number of measured values filter

Description

The number of measured values is counted for each feature, and any feature with less than a predefined minimum number of values in each group is removed. If there are several factors, then the threshold is applied so that the minimum number of samples is present for all combinations (interactions) of groups.

Usage

```
filter_na_count(threshold, factor_name, ...)
```

Arguments

```
threshold (numeric) The minimum number of samples in each group/interaction.

factor_name (character) The name of a sample-meta column to use.

... Additional slots and values passed to struct_class.
```

Value

A filter_na_count object with the following output slots:

```
filtered (DatasetExperiment) A DatasetExperiment object containing the filtered data. count (data.frame) The number of measured values in each group/interaction. (data.frame) The number of missing values in each group/interaction. (data.frame) Flags to indicate which features were removed.
```

Inheritance

```
A filter_na_count object inherits the following struct classes:
```

```
[filter_na_count] » [model] » [struct_class]
```

42 filter_smeta

Examples

filter_smeta

Filter by sample meta data

Description

The data is filtered by so that the named levels of a factor are included/excluded from the dataset.

Usage

```
filter_smeta(mode = "include", levels, factor_name, ...)
```

Arguments

mode (character) Mode of action. Allowed values are limited to the following:

• "include": Samples in the specified levels are retained.

• "exclude": Samples in the specified levels are excluded.

The default is "include".

levels (character) The level name(s) for filtering.

factor_name (character) The name of a sample-meta column to use.

Additional slots and values passed to struct_class.

Value

A filter_smeta object with the following output slots:

```
filtered (DatasetExperiment)
```

Inheritance

```
A filter_smeta object inherits the following struct classes:
```

```
[filter_smeta] » [model] » [struct_class]
```

fisher_exact 43

Examples

fisher_exact

Fisher Exact Test

Description

A fisher exact test is used to analyse contingency tables by comparing the number of correctly/incorrectly predicted group labels. A multiple test corrected p-value indicates whether the number of measured values is significantly different between groups.

Usage

```
fisher_exact(alpha = 0.05, mtc = "fdr", factor_name, factor_pred, ...)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.
 mtc (character) Multiple test correction method. Allowed values are limited to the following:

 "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
 "fdr": Benjamini and Hochberg False Discovery Rate correction.
 "none": No correction.

 The default is "fdr".
 (character) The name of a sample-meta column to use.
 factor_pred (data.frame) A data.frame, where each column is a factor of predicted group

labels to compare with the true groups labels.

Additional slots and values passed to struct_class.

Value

. . .

A fisher_exact object with the following output slots:

```
p_value (data.frame) The probability of observing the calculated statistic if the null hypothesis is true.

significant (data.frame) True/False indicating whether the p-value computed for each variable is less than the threshold.
```

fold_change

Inheritance

A fisher_exact object inherits the following struct classes:

```
[fisher_exact] » [model] » [struct_class]
```

Examples

```
M = fisher_exact(
    alpha = 0.05,
    mtc = "fdr",
    factor_name = "V1",
    factor_pred = data.frame(id=NA))

# load some data
D=MTBLS79_DatasetExperiment()

# prepare predictions based on NA
pred=as.data.frame(is.na(D$data))
pred=lapply(pred,factor,levels=c(TRUE,FALSE))
pred=as.data.frame(pred)

# apply method
M = fisher_exact(alpha=0.05,mtc='fdr',factor_name='Class',factor_pred=pred)
M=model_apply(M,D)
```

fold_change

Fold change

Description

Fold change is the relative change in mean (or non-parametric equivalent) intensities of a feature between all pairs of levels in a factor.

Usage

```
fold_change(
  factor_name,
  paired = FALSE,
  sample_name = character(0),
  threshold = 2,
  control_group = character(0),
  method = "geometric",
  conf_level = 0.95,
  ...
)
```

fold_change 45

Arguments

factor_name (character) The name of a sample-meta column to use.

paired (logical) Paired fold change. Allowed values are limited to the following:

- "TRUE": Fold change is calculated taking into account paired sampling.
- "FALSE": Fold change is calculated assuming there is no paired sampling.

The default is FALSE.

sample_name (character) The name of a sample_meta column containing sample identifiers

for paired sampling. The default is character(0).

threshold (numeric) The fold change threshold for labelling features as significant. The

default is 2.

control_group (character) The level name of the group used in the denominator (where possi-

ble) when computing fold change. The default is character(0).

method (character) Fold change method. Allowed values are limited to the following:

- "geometric": A log transform is applied before using group means to calculate fold change. In the non-tranformedspace this is equivalent to using geometric group means. Confidence intervals for independant and paired sampling are estimated using standard error of the mean in log transformed space before being transformed back to the original space.
- "median": The group medians and the method described by Price and Bonett is used to estimate confidence intervals. For paired data standard error of the median is used to estimate confidence intervals from the median fold change of all pairs.
- "mean": The group means and the method described by Price and Bonnet is used to estimate confidence intervals. For paired data standard error of the mean is used to estimate confidence intervals from the mean fold change of all pairs.

The default is "geometric".

conf_level (numeric) The confidence level of the interval. The default is 0.95.

... Additional slots and values passed to struct_class.

Value

A fold_change object with the following output slots:

fold_change (data.frame) The fold change between groups.

lower_ci (data.frame) Lower confidence interval for fold change. upper_ci (data.frame) Upper confidence interval for fold change.

significant (data.frame) A logical indictor of whether the calculated fold change including the estimated confidence limit

46 fold_change_int

Inheritance

A fold_change object inherits the following struct classes:

```
[fold_change] » [model] » [struct_class]
```

References

Price Jr RM, Bonett DG (2020). "Confidence Intervals for Ratios of Means and Medians." *Journal of Educational and Behavioral Statistics*, 45(6), 750-770.

Examples

```
M = fold_change(
    factor_name = "V1",
    sample_name = character(0),
    paired = FALSE,
    threshold = 2,
    control_group = character(0),
    method = "geometric",
    conf_level = 0.95)
D = MTBLS79_DatasetExperiment()
M = fold_change(factor_name='Class')
M = model_apply(M,D)
```

fold_change_int

Fold change for interactions between factors

Description

For more than one factor the fold change calculation is extended to include all combinations of levels (interactions) of all factors. Paired fold changes are not possible for this computation.

Usage

```
fold_change_int(
  factor_name,
  threshold = 2,
  control_group = character(0),
  method = "geometric",
  conf_level = 0.95,
  ...
)
```

fold_change_int 47

Arguments

method

factor_name (character) The name of a sample-meta column to use.

threshold (numeric) The fold change threshold for labelling features as significant. The

default is 2.

control_group (character) The level names of the groups used in the denominator (where pos-

sible) when computing fold change. One level for each factor, assumed to be in

the same order as factor_name. The default is character(0).

(character) Fold change method. Allowed values are limited to the following:

"geometric": A log transform is applied before using group means to calculate fold change. In the non-tranformedspace this is equivalent to using geometric group means. Confidence intervals for independant and paired sampling are estimated using standard error of the mean in log transformed space before being transformed back to the original space.

- "median": The group medians and the method described by Price and Bonett is used to estimate confidence intervals. For paired data standard error of the median is used to estimate confidence intervals from the median fold change of all pairs.
- "mean": The group means and the method described by Price and Bonnet is
 used to estimate confidence intervals. For paired data standard error of the
 mean is used to estimate confidence intervals from the mean fold change of
 all pairs.

The default is "geometric".

conf_level (numeric) The confidence level of the interval. The default is 0.95.

... Additional slots and values passed to struct_class.

Value

A fold_change_int object with the following output slots:

fold_change (data.frame) The fold change between groups.

lower_ci (data.frame) Lower confidence interval for fold change. upper_ci (data.frame) Upper confidence interval for fold change.

significant (data.frame) A logical indictor of whether the calculated fold change including the estimated confidence limit

Inheritance

A fold_change_int object inherits the following struct classes:

```
[fold_change_int] » [fold_change] » [model] » [struct_class]
```

References

Lloyd GR, Jankevics A, Weber RJM (2020). "struct: an R/Bioconductor-based framework for standardized metabolomics data analysis and beyond." *Bioinformatics*, *36*(22-23), 5551-5552. https://doi.org/10.1093/bioinformatics/btaa1031.

48 fold_change_plot

Examples

```
M = fold_change_int(
    factor_name = "V1",
    sample_name = character(0),
    threshold = 2,
    control_group = character(0),
    method = "geometric",
    paired = FALSE,
    conf_level = 0.95)

D = MTBLS79_DatasetExperiment()
D=D[,1:10,drop=FALSE]
M = filter_smeta(mode='exclude',levels='QC',factor_name='Class') +
    fold_change_int(factor_name=c('Class','Batch'))
M = model_apply(M,D)
```

fold_change_plot

Fold change plot

Description

A plot of fold changes calculated for a chosen subset of features. A predefined fold change threshold is indicated by shaded regions.

Usage

```
fold_change_plot(number_features = 20, orientation = "portrait", ...)
```

Arguments

number_features

(numeric) The number randomly selected features to plot, or a list of column numbers. The default is 20.

orientation

(character) Plot orientation. Allowed values are limited to the following:

- "landscape": Features are plotted on the y-axis.
- "portrait": Features are plotted on the x-axis.

The default is "portrait".

.. Additional slots and values passed to struct_class.

Value

A fold_change_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A fold_change_plot object inherits the following struct classes:

```
[fold_change_plot] » [chart] » [struct_class]
```

Examples

```
M = fold_change_plot(
          number_features = 10,
          orientation = "portrait")
C = fold_change_plot()
```

forward_selection_by_rank

Forward selection by rank

Description

A model is trained and performance metric computed by including increasing numbers of features in the model. The features to be included in each step are defined by their rank, which is computed from another variable e.g. VIP score. An "optimal" subset of features is suggested by minimising the input performance metric.

Usage

```
forward_selection_by_rank(
   min_no_vars = 1,
   max_no_vars = 100,
   step_size = 1,
   factor_name,
   variable_rank,
   ...
)
```

Arguments

min_no_vars	(numeric) The minimum number of variables to include in the model. The default is 1.
max_no_vars	(numeric) The maximum number of variables to include in the model. The default is 100.
step_size	(numeric) The incremental change in number of features in the model. The default is 1.

```
factor_name (character) The name of a sample-meta column to use.

variable_rank (numeric, integer) The values used to rank the features.

Additional slots and values passed to struct_class.
```

Value

A forward_selection_by_rank object with the following output slots:

```
metric (data.frame) The value of the computed metric for each model. For nested models the metric is averaged.

results (data.frame) The predicted outputs from collated from all models computed during forward selection.

(numeric, integer) The column number of the variables chosen for the best performing model.

(numeric) The value of the performance metric for each evaluated model after smoothing.

(numeric) The maxmimum rank of features included in each model.
```

Inheritance

A forward_selection_by_rank object inherits the following struct classes:

```
[forward_selection_by_rank] » [resampler] » [iterator] » [struct_class]
```

```
M = forward_selection_by_rank(
      min_no_vars = 1,
      max_no_vars = 100,
      step_size = 1,
      factor_name = "V1".
      variable_rank = 1)
# some data
D = MTBLS79_DatasetExperiment(filtered=TRUE)
# normalise, impute and scale then remove QCs
P = pqn_norm(qc_label='QC',factor_name='Class') +
    knn_impute(neighbours=5) +
    glog_transform(qc_label='QC',factor_name='Class') +
    filter_smeta(mode='exclude',levels='QC',factor_name='Class')
P = model_apply(P,D)
D = predicted(P)
# forward selection using a PLSDA model
M = forward_selection_by_rank(factor_name='Class',
                             min_no_vars=2,
                             max_no_vars=11,
                             variable_rank=1:2063) *
    (mean_centre() + PLSDA(number_components=1,
                           factor_name='Class'))
M = run(M,D,balanced_accuracy())
```

fs_line 51

fs_line

Forward selection line plot

Description

A line plot for forward selection. The computed model performance metric is plotted against the number of features included in the model.

Usage

```
fs_line(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A fs_line object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A fs_line object inherits the following struct classes:

```
[fs_line] » [chart] » [struct_class]
```

```
M = fs_line()
# some data
D = MTBLS79_DatasetExperiment(filtered=TRUE)
# normalise, impute and scale then remove QCs
P = pqn_norm(qc_label='QC',factor_name='Class') +
   knn_impute(neighbours=5) +
    glog_transform(qc_label='QC',factor_name='Class') +
    filter_smeta(mode='exclude',levels='QC',factor_name='Class')
P = model_apply(P,D)
D = predicted(P)
# forward selection using a PLSDA model
M = forward_selection_by_rank(factor_name='Class',
                             min_no_vars=2,
                             max_no_vars=11,
                             variable_rank=1:2063) *
    (mean_centre() + PLSDA(number_components=1,
                           factor_name='Class'))
```

52 glog_opt_plot

```
M = run(M,D,balanced_accuracy())
# chart
C = fs_line()
chart_plot(C,M)
```

glog_opt_plot

Glog optimisation

Description

A plot of the sum of squares error (SSE) vs different values of lambda for the glog transform. The indicated optimum value for lambda minimises the SSE.

Usage

```
glog_opt_plot(plot_grid = 100, ...)
```

Arguments

```
plot_grid (numeric) The default is 100.
```

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

pmp

Value

A glog_opt_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A glog_opt_plot object inherits the following struct classes:

```
[glog_opt_plot] » [chart] » [struct_class]
```

References

Jankevics A, Lloyd GR, Weber RJM (2023). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. doi:10.18129/B9.bioc.pmp https://doi.org/10.18129/B9.bioc.pmp, R package version 1.14.0, https://bioconductor.org/packages/pmp.

glog_transform 53

Examples

glog_transform

Generalised logarithmic transform

Description

The generalised logarithm (glog) transformation applies a log transformation while applying an offset to account for technical variation.

Usage

```
glog_transform(qc_label = "QC", factor_name, lambda = NULL, ...)
```

Arguments

```
qc_label (character) The label used to identify QC samples. The default is "QC".

factor_name (character) The name of a sample-meta column to use.

lambda (numeric, NULL) The value of lambda to use. If NULL then the pmp package will be used to determine an "optimal" value for lambda. The default is NULL.

Additional slots and values passed to struct_class.
```

Details

This object makes use of functionality from the following packages:

pmp

Value

A glog_transform object with the following output slots:

```
transformed (DatasetExperiment) A DatasetExperiment object containing the glog transformed data.

error_flag (logical) A logical indicating whether the glog optimisation for lambda was successful. If not then PMP return
```

Inheritance

A glog_transform object inherits the following struct classes:

```
[glog_transform] » [model] » [struct_class]
```

54 grid_search_1d

References

Jankevics A, Lloyd GR, Weber RJM (2023). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. doi:10.18129/B9.bioc.pmp https://doi.org/10.18129/B9.bioc.pmp, R package version 1.14.0, https://bioconductor.org/packages/pmp.

Durbin B, Hardin J, Hawkins D, Rocke D (2002). "A variance-stabilizing transformation for gene-expression microarray data." *Bioinformatics*, 18(Suppl 1), S105-S110.

Parsons HM, Ludwig C, Gunther UL, Viant MR (2007). "Improved classification accuracy in 1- and ', '2-dimensional NMR metabolomics data using the variance', 'stabilising generalised logarithm transformation." *Bioinformatics*, 8(1), 234.

Examples

grid_search_1d

One dimensional grid search

Description

A one dimensional grid search calculates a performance metric for a model at evenly spaced values for a model input parameter. The "optimum" value for the parameter is suggested as the one which maximises performance, or minimises error (whichever is appropriate for the chosen metric)

Usage

```
grid_search_1d(
   param_to_optimise,
   search_values,
   model_index,
   factor_name,
   max_min = "min",
   ...
)
```

Arguments

```
param_to_optimise
```

(character) The name of the model input parameter that is the focus of the search.

search_values (ANY) The values of the input parameter being optimised.

grid_search_1d 55

model_index (numeric, integer) The index of the model in the sequence that uses the parameter being optimised.

factor_name

(character) The name of a sample-meta column to use.

max_min

(character) Maximise or minimise. Allowed values are limited to the following:

- "max": The optimium parameter value is suggested based on maximising the performance metric.
- "min": The optimium parameter value is suggested based on minimising the performance metric.

The default is "min".

... Additional slots and values passed to struct_class.

Value

A grid_search_1d object with the following output slots:

```
results (data.frame)
metric (data.frame)
optimum_value (numeric)
```

Inheritance

A grid_search_1d object inherits the following struct classes:

```
[grid_search_1d] » [resampler] » [iterator] » [struct_class]
```

```
M = grid_search_1d(
      param_to_optimise = character(0),
      search_values = numeric(0),
      model_index = numeric(0),
      factor_name = "V1",
      max_min = "min")
D = MTBLS79_DatasetExperiment()
# some preprocessing
M = pqn_norm(qc_label='QC',factor_name='Class') +
    knn_impute() +
    glog_transform(qc_label='QC',factor_name='Class') +
    filter_smeta(factor_name='Class',levels='QC',mode='exclude')
M=model_apply(M,D)
D=predicted(M)
# reduce number of features for this example
D=D[,1:10]
# optmise number of components for PLS model
I = grid_search_1d(param_to_optimise='number_components',search_values=1:5,
```

56 gs_line

```
model_index=2,factor_name='Class') *
    (mean_centre()+PLSDA(factor_name='Class'))
I = run(I,D,balanced_accuracy())
```

gs_line

Grid search line plot

Description

A plot of the calculated performance metric against the model input parameter values used to train the model. The optimum parameter value is indicated based on minimising (or maximising) the chosen metric.

Usage

```
gs_line(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A gs_line object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A gs_line object inherits the following struct classes:

```
[gs_line] » [chart] » [struct_class]
```

```
M = gs_line()
C = gs_line()
```

HCA 57

HCA

Hierarchical Cluster Analysis

Description

Hierarchical Cluster Analysis is a numerical technique that uses agglomerative clustering to identify clusters or groupings of samples.

Usage

```
HCA(
   dist_method = "euclidean",
   cluster_method = "complete",
   minkowski_power = 2,
   factor_name,
   ...
)
```

Arguments

dist_method

(character) Distance measure. Allowed values are limited to the following:

- "euclidean": The euclidean distance (2 norm).
- "maximum": The maximum distance.
- "manhattan": The absolute distance (1 norm).
- "canberra": A weighted version of the mahattan distance.
- "minkowski": A generalisation of manhattan and euclidean distance to nth norm.

The default is "euclidean".

cluster_method (character) Agglomeration method. Allowed values are limited to the following:

- "ward.D": Ward clustering.
- "ward.D2": Ward clustering using sqaured distances.
- "single": Single linkage.
- "complete": Complete linkage.
- "average": Average linkage (UPGMA).
- "mcquitty": McQuitty linkage (WPGMA).
- "median": Median linkage (WPGMC).
- "centroid": Centroid linkage (UPGMC).

The default is "complete".

minkowski_power

(numeric) The default is 2.

factor_name (character

(character) The name of a sample-meta column to use.

... Additional slots and values passed to struct_class.

58 hca_dendrogram

Details

This object makes use of functionality from the following packages:

```
• stats
```

Value

A HCA object with the following output slots:

```
dist_matrix (dist) An object containing pairwise distance information between samples.

hclust (hclust) An object of class hclust which describes the tree produced by the clustering process.

factor_df (data.frame)
```

Inheritance

A HCA object inherits the following struct classes:

```
[HCA] » [model] » [struct_class]
```

References

R Core Team (2023). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Examples

hca_dendrogram

HCA dendrogram

Description

A dendrogram visualising the clustering by HCA.

Usage

```
hca_dendrogram(...)
```

HSD 59

Arguments

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• ggdendro

Value

A hca_dendrogram object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A hca_dendrogram object inherits the following struct classes:

```
[hca_dendrogram] » [chart] » [struct_class]
```

References

de Vries A, Ripley BD (2022). *ggdendro: Create Dendrograms and Tree Diagrams Using 'gg-plot2'*. R package version 0.1.23, https://CRAN.R-project.org/package=ggdendro.

Examples

```
M = hca_dendrogram()
C = hca_dendrogram()
```

HSD

Tukey's Honest Significant Difference

Description

Tukey's HSD post hoc test is a modified t-test applied for all features to all pairs of levels in a factor. It is used to determine which groups are different (if any). A multiple test corrected p-value is computed to indicate which groups are significantly different to the others for each feature.

Usage

```
HSD(alpha = 0.05, mtc = "fdr", formula, unbalanced = FALSE, ...)
```

60 HSD

Arguments

mtc

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

(character) Multiple test correction method. Allowed values are limited to the

following:

• "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.

• "fdr": Benjamini and Hochberg False Discovery Rate correction.

• "none": No correction.

The default is "fdr".

formula (formula) A symbolic description of the model to be fitted.

unbalanced (logical) Unbalanced model. Allowed values are limited to the following:

• "TRUE": A correction is applied for unbalanced designs.

• "FALSE": No correction is applied for unbalanced designs.

The default is FALSE.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• agricolae

Value

A HSD object with the following output slots:

difference (data.frame)
UCL (data.frame)
LCL (data.frame)

p_value (data.frame) The probability of observing the calculated statistic if the null hypothesis is true.

significant (data.frame) True/False indicating whether the p-value computed for each variable is less than the threshold.

Inheritance

A HSD object inherits the following struct classes:

```
[HSD] » [model] » [struct_class]
```

References

de Mendiburu F (2023). *agricolae: Statistical Procedures for Agricultural Research*. R package version 1.3-7, https://CRAN.R-project.org/package=agricolae.

HSDEM 61

Examples

```
M = HSD(
    alpha = 0.05,
    mtc = "fdr",
    formula = y ~ x,
    unbalanced = FALSE)

D = iris_DatasetExperiment()
M = HSD(formula=y~Species)
M = model_apply(M,D)
```

HSDEM

Tukey's Honest Significant Difference using estimated marginal means

Description

Tukey's HSD post hoc test is a modified t-test applied for all features to all pairs of levels in a factor. It is used to determine which groups are different (if any). A multiple test corrected p-value is computed to indicate which groups are significantly different to the others for each feature. For mixed effects models estimated marginal means are used.

Usage

```
HSDEM(alpha = 0.05, mtc = "fdr", formula, ...)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc (character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.
- "none": No correction.

The default is "fdr".

formula (formula) A symbolic description of the model to be fitted.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- emmeans
- nlme

62 kfoldxcv_grid

Value

A HSDEM object with the following output slots:

```
p_value (data.frame) The probability of observing the calculated statistic if the null hypothesis is true.

significant (data.frame) True/False indicating whether the p-value computed for each variable is less than the threshold.
```

Inheritance

A HSDEM object inherits the following struct classes:

```
[HSDEM] » [model] » [struct_class]
```

References

```
Lenth R (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.9.0, https://CRAN.R-project.org/package=emmeans.
```

Pinheiro J, Bates D, R Core Team (2023). *nlme: Linear and Nonlinear Mixed Effects Models*. R package version 3.1-164, https://CRAN.R-project.org/package=nlme.

Pinheiro JC, Bates DM (2000). *Mixed-Effects Models in S and S-PLUS*. Springer, New York. doi:10.1007/b98882 https://doi.org/10.1007/b98882.

Examples

```
M = HSDEM(
    alpha = 0.05,
    mtc = "fdr",
    formula = y ~ x)

D = iris_DatasetExperiment()
D$sample_meta$id=rownames(D) # dummy id column
M = HSDEM(formula = y~Species+ Error(id/Species))
M = model_apply(M,D)
```

kfoldxcv_grid

k-fold cross validation plot

Description

A graphic for visualising the true class and the predicted class of samples in all groups for all cross-validation folds.

Usage

```
kfoldxcv_grid(factor_name, level, ...)
```

kfoldxcv_metric 63

Arguments

```
factor_name (character) The name of a sample-meta column to use.

level (character) The level/group to plot.

Additional slots and values passed to struct_class.
```

Value

A kfoldxcv_grid object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A kfoldxcv_grid object inherits the following struct classes:

```
[kfoldxcv_grid] » [chart] » [struct_class]
```

Examples

```
M = kfoldxcv_grid(
    factor_name = "V1",
    level = "level_1")

D = iris_DatasetExperiment()
I = kfold_xval(factor_name='Species') *
    (mean_centre() + PLSDA(factor_name='Species'))
I = run(I,D,balanced_accuracy())

C = kfoldxcv_grid(factor_name='Species',level='setosa')
chart_plot(C,I)
```

kfoldxcv_metric

kfoldxcv metric plot

Description

A boxplot of the performance metric computed for each fold of a k-fold cross-validation.

Usage

```
kfoldxcv_metric(...)
```

Arguments

... Additional slots and values passed to struct_class.

64 kfold_xval

Value

A kfoldxcv_metric object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A kfoldxcv_metric object inherits the following struct classes:

```
[kfoldxcv_metric] » [chart] » [struct_class]
```

Examples

```
M = kfoldxcv_metric()
C = kfoldxcv_metric()
```

kfold_xval

k-fold cross-validation

Description

k-fold cross-validation is an iterative approach applied to validate models. The samples are divided into k "folds", or subsets. Each subset is excluded from model training and used for model validation once, resulting in a single left-out prediction for each sample. Model performance metrics are then computed for the training and test sets across all folds.

Usage

```
kfold_xval(folds = 10, method = "venetian", factor_name, collect = NULL, ...)
```

Arguments

folds (numeric, integer) The number of cross-validation folds. The default is 10.

method (character) Fold selection method. Allowed values are limited to the following:

• "venetian": Every nth sample is assigned to the same fold, where n is the number of folds.

• "blocks": Blocks of adjacent samples are assigned to the same fold.

• "random": Samples are randomly assigned to a fold.

The default is "venetian".

factor_name (character) The name of a sample-meta column to use.

collect (NULL, character) The name of a model output to collect over all bootstrap repetitions, in addition to the input metric. The default is NULL.

Additional slots and values passed to struct_class.

knn_impute 65

Value

A kfold_xval object with the following output slots:

```
results (data.frame)
metric (data.frame)
metric.train (numeric)
metric.test (numeric)
collected (list)
```

Inheritance

A kfold_xval object inherits the following struct classes:

```
[kfold_xval] » [resampler] » [iterator] » [struct_class]
```

Examples

```
M = kfold_xval(
    folds = 5,
    method = "random",
    factor_name = "V1",
    collect = NULL)

D = iris_DatasetExperiment()
I = kfold_xval(factor_name='Species') *
    (mean_centre() + PLSDA(factor_name='Species'))
I = run(I,D,balanced_accuracy())
```

knn_impute

kNN missing value imputation

Description

k-nearest neighbour missing value imputation replaces missing values in the data with the average of a predefined number of the most similar neighbours for which the value is present

Usage

```
knn_impute(
  neighbours = 5,
  sample_max = 50,
  feature_max = 50,
  by = "features",
  ...
)
```

knn_impute

Arguments

neighbours	(numeric) The number of neighbours (k) to use for imputation. The default is 5.
sample_max	(numeric) The maximum percent missing values per sample. The default is 50.
feature_max	(numeric) The maximum percent missing values per feature. The default is 50.
by	(character) Impute using similar "samples" or "features". Default features. The default is "features".
	Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

pmp

Value

A knn_impute object with the following output slots:

imputed (DatasetExperiment) A DatasetExperiment object containing the data where missing values have been imputed.

Inheritance

A knn_impute object inherits the following struct classes:

```
[knn_impute] » [model] » [struct_class]
```

References

Jankevics A, Lloyd GR, Weber RJM (2023). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. doi:10.18129/B9.bioc.pmp https://doi.org/10.18129/B9.bioc.pmp, R package version 1.14.0, https://bioconductor.org/packages/pmp.

```
M = knn_impute(
    neighbours = 5,
    feature_max = 50,
    sample_max = 50,
    by = "features")

M = knn_impute()
```

kw_p_hist 67

kw_p_hist

Histogram of p values

Description

A histogram of the p-values computed by the kruskal-wallis method

Usage

```
kw_p_hist(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A kw_p_hist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A kw_p_hist object inherits the following struct classes:

```
[kw_p_hist] » [chart] » [struct_class]
```

Examples

```
M = kw_p_hist()
C = kw_p_hist()
```

kw_rank_sum

Kruskal-Wallis rank sum test

Description

The Kruskal-Wallis test is a univariate hypothesis testing method that allows multiple (n>=2) groups to be compared without making the assumption that values are normally distributed. It is the non-parametric equivalent of a 1-way ANOVA. The test is applied to all variables/features individually, and multiple test corrected p-values are computed to indicate the significance of variables/features.

Usage

```
kw_rank_sum(alpha = 0.05, mtc = "fdr", factor_names, ...)
```

68 kw_rank_sum

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc (character) Multiple test correction method. Allowed values are limited to the

following:

• "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.

• "fdr": Benjamini and Hochberg False Discovery Rate correction.

• "none": No correction.

The default is "fdr".

factor_names (character) The name of sample meta column(s) to use.

... Additional slots and values passed to struct_class.

Value

A kw_rank_sum object with the following output slots:

test_statistic (data.frame) The value of the calculated statistic which is converted to a p-value when compared to a chi2-

p_value (data.frame) The probability of observing the calculated statistic.

dof (numeric) The number of degrees of freedom used to calculate the test statistic.

significant (data.frame) TRUE if the calculated p-value is less than the supplied threhold (alpha).

estimates (data.frame)

Inheritance

A kw_rank_sum object inherits the following struct classes:

```
[kw_rank_sum] » [model] » [struct_class]
```

linear_model 69

Description

Linear models can be used to carry out regression, single stratum analysis of variance and analysis of covariance.

Usage

```
linear_model(formula, na_action = "na.omit", contrasts = list(), ...)
```

Arguments

formula	(formula) A symbolic description of the model to be fitted.
na_action	(character) NA action. Allowed values are limited to the following:
	• "na.omit": Incomplete cases are removed.
	• "na.fail": An error is thrown if NA are present.
	• "na.exclude": Incomplete cases are removed, and the output result is padded to the correct size using NA.
	• "na.pass": Does not apply a linear model if NA are present.
	The default is "na.omit".
contrasts	(list) The contrasts associated with a factor. The default is list().
	Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• stats

Value

A linear_model object with the following output slots:

```
lm(Im) The Im object for this model_.coefficients(numeric) The coefficients for the fitted model_.residuals(numeric) The residuals for the fitted model_.fitted_values(numeric) The fitted values for the data used to train the model_.predicted_values(numeric) The predicted values for new data using the fitted model_.r_squared(numeric) The value of R Squared for the fitted model_.adj_r_squared(numeric) The value of Adjusted R Squared for the fitted model_.
```

70 log_transform

Inheritance

A linear_model object inherits the following struct classes:

```
[linear_model] » [model] » [struct_class]
```

References

R Core Team (2023). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Examples

```
M = linear_model(
    formula = y ~ x,
    na_action = "na.omit",
    contrasts = list())

D = iris_DatasetExperiment()
M = linear_model(formula = y~Species)
```

log_transform

logarithm transform

Description

A logarithmic transform is applied to all values in the data matrix.

Usage

```
log_transform(base = 10, ...)
```

Arguments

base

(numeric) The base of the logarithm used for the transform. The default is 10.

... Additional slots and values passed to struct_class.

Value

A log_transform object with the following output slots:

transformed (DatasetExperiment) A DatasetExperiment object containing the log transformed data.

struct object

mean_centre 71

Inheritance

A log_transform object inherits the following struct classes:

```
[log_transform] » [model] » [struct_class]
```

Examples

mean_centre

Mean centre

Description

The mean sample is subtracted from all samples in the data matrix. The features in the centred matrix all have zero mean.

Usage

```
mean_centre(mode = "data", ...)
```

Arguments

mode

(character) Mode of action. Allowed values are limited to the following:

- "data": Centring is applied to the data block.
- "sample_meta": Centring is applied to the sample_meta block.
- "both": Centring is applied to both the data and the sample_meta blocks.

The default is "data".

... Additional slots and values passed to struct_class.

Value

A mean_centre object with the following output slots:

Inheritance

A mean_centre object inherits the following struct classes:

```
[mean_centre] » [preprocess] » [model] » [struct_class]
```

72 mean_of_medians

Examples

mean_of_medians

Mean of medians

Description

The data matrix is normalised by the mean of the median of each factor level.

Usage

```
mean_of_medians(factor_name, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.
```

Value

A mean_of_medians object with the following output slots:

transformed (DatasetExperiment) Data after the tranformation has been applied.

Inheritance

A mean_of_medians object inherits the following struct classes:

```
[mean_of_medians] » [model] » [struct_class]
```

mixed_effect 73

|--|

Description

A mixed effects model is an extension of ANOVA where there are both fixed and random effects.

Usage

```
mixed_effect(alpha = 0.05, mtc = "fdr", formula, ss_type = "marginal", ...)
```

Arguments

(numeric) The p-value cutoff for determining significance. The default is 0.05. alpha (character) Multiple test correction method. Allowed values are limited to the mtc following: • "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons. • "fdr": Benjamini and Hochberg False Discovery Rate correction. • "none": No correction. The default is "fdr". formula (formula) A symbolic description of the model to be fitted. ss_type (character) Sum of squares type. Allowed values are limited to the following: • "marginal": Type III sum of squares. • "sequential": Type II sum of squares. The default is "marginal". Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- nlme
- emmeans

Value

A mixed_effect object with the following output slots:

```
f_statistic (data.frame) The value of the calculated statistic.
p_value (data.frame) The probability of observing the calculated statistic if the null hypothesis is true.
significant (data.frame) True/False indicating whether the p-value computed for each variable is less than the threshold.
```

Inheritance

A mixed_effect object inherits the following struct classes:

```
[mixed_effect] » [ANOVA] » [model] » [stato] » [struct_class]
```

References

Pinheiro J, Bates D, R Core Team (2023). *nlme: Linear and Nonlinear Mixed Effects Models*. R package version 3.1-164, https://CRAN.R-project.org/package=nlme.

Pinheiro JC, Bates DM (2000). *Mixed-Effects Models in S and S-PLUS*. Springer, New York. doi:10.1007/b98882 https://doi.org/10.1007/b98882.

Lenth R (2023). *emmeans: Estimated Marginal Means, aka Least-Squares Means*. R package version 1.9.0, https://CRAN.R-project.org/package=emmeans.

Fox J, Weisberg S (2019). *An R Companion to Applied Regression*, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

Examples

```
M = mixed_effect(
    alpha = 0.05,
    mtc = "fdr",
    formula = y ~ x,
    ss_type = "marginal")

D = iris_DatasetExperiment()
D$sample_meta$id=rownames(D) # dummy id column
M = mixed_effect(formula = y~Species+ Error(id/Species))
M = model_apply(M,D)
```

Description

Applies method to the input DatasetExperiment

```
## S4 method for signature 'ANOVA,DatasetExperiment'
model_apply(M, D)

## S4 method for signature 'HSD,DatasetExperiment'
model_apply(M, D)

## S4 method for signature 'mixed_effect,DatasetExperiment'
model_apply(M, D)
```

S4 method for signature 'HSDEM, DatasetExperiment'

```
model_apply(M, D)
## S4 method for signature 'classical_lsq,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'confounders_clsq,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'constant_sum_norm,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'corr_coef,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'split_data,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'equal_split,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'filter_smeta,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'fisher_exact,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'fold_change,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'fold_change_int,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'HCA, DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'knn_impute,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'kw_rank_sum,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'log_transform,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'mean_of_medians,DatasetExperiment'
model_apply(M, D)
```

```
## S4 method for signature 'nroot_transform,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'pairs_filter,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'prop_na,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'rsd_filter,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'sb_corr,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'stratified_split,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'tSNE,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'ttest,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'vec_norm,DatasetExperiment'
model_apply(M, D)
## S4 method for signature 'wilcox_test,DatasetExperiment'
model_apply(M, D)
```

Arguments

M a method object

D another object used by the first

Value

Returns a modified method object

```
M=model()
model_apply(M,DatasetExperiment())
```

Description

Apply a model using the input DatasetExperiment. Assumes the model is trained first.

```
## S4 method for signature 'DFA,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'PCA, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'PLSR,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'PLSDA, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'autoscale, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'blank_filter,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'constant_sum_norm,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'dratio_filter,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'filter_by_name,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'filter_na_count,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'filter_smeta,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'glog_transform,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'linear_model,DatasetExperiment'
```

```
model_predict(M, D)
## S4 method for signature 'mean_centre, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'mv_feature_filter,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'mv_sample_filter,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'OPLSR,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'OPLSDA,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'pareto_scale,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'pqn_norm,DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'SVM, DatasetExperiment'
model_predict(M, D)
## S4 method for signature 'vec_norm,DatasetExperiment'
model_predict(M, D)
```

Arguments

M a model object

D a DatasetExperiment object

Value

Returns a modified model object

Examples

```
M = example_model()
M = model_predict(M,iris_DatasetExperiment())
```

Description

Reverse the effect of a preprocessing step on a DatasetExperiment.

Usage

```
## S4 method for signature 'autoscale,DatasetExperiment'
model_reverse(M, D)
## S4 method for signature 'mean_centre,DatasetExperiment'
model_reverse(M, D)
```

Arguments

```
M a model object
```

D a DatasetExperiment object

Value

Returns a modified DatasetExperiment object

Examples

```
M = example_model()
D = model_reverse(M,iris_DatasetExperiment())
```

```
{\sf model\_train}, {\sf DFA}, {\sf DatasetExperiment-method} {\it Train\ a\ model}
```

Description

Trains a model using the input DatasetExperiment

```
## S4 method for signature 'DFA,DatasetExperiment'
model_train(M, D)

## S4 method for signature 'PCA,DatasetExperiment'
model_train(M, D)

## S4 method for signature 'PLSR,DatasetExperiment'
model_train(M, D)

## S4 method for signature 'PLSDA,DatasetExperiment'
model_train(M, D)
```

```
## S4 method for signature 'autoscale, DatasetExperiment'
model_train(M, D)
## S4 method for signature 'blank_filter,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'constant_sum_norm,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'dratio_filter,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'filter_by_name,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'filter_na_count,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'filter_smeta,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'glog_transform, DatasetExperiment'
model_train(M, D)
## S4 method for signature 'linear_model,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'mean_centre,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'mv_feature_filter,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'mv_sample_filter,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'OPLSR, DatasetExperiment'
model_train(M, D)
## S4 method for signature 'OPLSDA,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'pareto_scale, DatasetExperiment'
model_train(M, D)
## S4 method for signature 'pqn_norm,DatasetExperiment'
model_train(M, D)
```

```
## S4 method for signature 'SVM,DatasetExperiment'
model_train(M, D)
## S4 method for signature 'vec_norm,DatasetExperiment'
model_train(M, D)
```

Arguments

M a model object

D a DatasetExperiment object

Value

Returns a modified model object

Examples

```
M = example_model()
M = model_train(M,iris_DatasetExperiment())
```

MTBLS79_DatasetExperiment

MTBLS79: Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control

Description

Direct-infusion mass spectrometry (DIMS) metabolomics is an important approach for characterising molecular responses of organisms to disease, drugs and the environment. Increasingly large-scale metabolomics studies are being conducted, necessitating improvements in both bioanalytical and computational workflows to maintain data quality. This dataset represents a systematic evaluation of the reproducibility of a multi-batch DIMS metabolomics study of cardiac tissue extracts. It comprises of twenty biological samples (cow vs. sheep) that were analysed repeatedly, in 8 batches across 7 days, together with a concurrent set of quality control (QC) samples. Data are presented from each step of the workflow and are available in MetaboLights (https://www.ebi.ac.uk/metabolights/MTBLS79)

Usage

```
MTBLS79_DatasetExperiment(filtered = FALSE)
```

Arguments

filtered

TRUE to load data with quality control filters already applied, or FALSE to load the unfiltered data. Default is FALSE. The raw data is available from (https://www.ebi.ac.uk/metabolights/MTBLS79) and as an R dataset in the pmp package, available on Bioconductor.

82 mv_boxplot

Value

DatasetExperiment object

Examples

```
D = MTBLS79_DatasetExperiment()
summary(D)
```

mv_boxplot

Missing value boxplots

Description

Boxplots of the number of missing values per sample/feature.

Usage

```
mv_boxplot(
    label_outliers = TRUE,
    by_sample = TRUE,
    factor_name,
    show_counts = TRUE,
    ...
)
```

Arguments

label_outliers (logical) Label outliers. Allowed values are limited to the following:

- "TRUE": Sample labels for potential outliers are displayed on the plot.
- "FALSE": Sample labels are not included on the plot.

The default is TRUE.

by_sample

(logical) Plot by sample or by feature. Allowed values are limited to the following:

- "TRUE": Missing values are plotted per sample.
- "FALSE": Missing values are plotted per feature.

The default is TRUE.

factor_name

(character) The name of a sample-meta column to use.

show_counts

(logical) Show counts. Allowed values are limited to the following:

- "TRUE": The number of samples for each box is displayed.
- "FALSE": The number of samples for each box is not displayed.

The default is TRUE.

... Additional slots and values passed to struct_class.

mv_feature_filter 83

Value

A mv_boxplot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A mv_boxplot object inherits the following struct classes:

```
[mv_boxplot] » [chart] » [struct_class]
```

Examples

```
M = mv_boxplot(
    label_outliers = FALSE,
    by_sample = FALSE,
    factor_name = "V1",
    show_counts = FALSE)

D = MTBLS79_DatasetExperiment()
C = mv_boxplot(factor_name='Class')
chart_plot(C,D)
```

mv_feature_filter

Filter features by missing values

Description

Removes features where the percentage of non-missing values falls below a threshold.

Usage

```
mv_feature_filter(
   threshold = 20,
   qc_label = "QC",
   method = "QC",
   factor_name,
   ...
)
```

Arguments

threshold (numeric) The minimum percentage of non-missing values. The default is 20.

qc_label (character) The label used to identify QC/group samples when using the "QC" (within a named group) filtering method. The default is "QC".

method (character) Filtering method. Allowed values are limited to the following:

84 mv_feature_filter

- "within_all": Features are removed if the threshold for non-missing values is not met for all groups.
- "within_one": Features are removed if the threshold for non-missing values is not met for any group.
- "QC": Features are removed if the threshold for non-missing values is not met for the named group.
- "across": The filter is applied ignoring sample group.

The default is "QC".

factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

pmp

Value

A mv_feature_filter object with the following output slots:

```
filtered (DatasetExperiment) A DatasetExperiment object containing the filtered data.

flags (data.frame) % missing values and a flag indicating whether the sample was rejected. 0 = rejected.
```

Inheritance

A mv_feature_filter object inherits the following struct classes:

```
[mv_feature_filter] » [model] » [struct_class]
```

References

Jankevics A, Lloyd GR, Weber RJM (2023). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. doi:10.18129/B9.bioc.pmp https://doi.org/10.18129/B9.bioc.pmp, R package version 1.14.0, https://bioconductor.org/packages/pmp.

mv_feature_filter_hist 85

```
mv_feature_filter_hist
```

Histogram of missing values per feature

Description

A histogram of the proportion of missing values per feature.

Usage

```
mv_feature_filter_hist(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A mv_feature_filter_hist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A mv_feature_filter_hist object inherits the following struct classes:

```
[mv_feature_filter_hist] » [chart] » [struct_class]
```

Examples

```
M = mv_feature_filter_hist()
C = mv_feature_filter_hist()
```

mv_histogram

Missing value histogram

Description

A histogram of the numbers of missing values per sample/feature

```
mv_histogram(label_outliers = TRUE, by_sample = TRUE, ...)
```

86 mv_sample_filter

Arguments

label_outliers (logical) Label outliers. Allowed values are limited to the following:

- "TRUE": Sample labels for potential outliers are displayed on the plot.
- "FALSE": Sample labels are not included on the plot.

The default is TRUE.

by_sample

(logical) Plot by sample or by feature. Allowed values are limited to the following:

- "TRUE": Missing values are plotted per sample.
- "FALSE": Missing values are plotted per feature.

The default is TRUE.

... additional slots and values passed to struct_class

Value

A mv_histogram object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

struct object

Inheritance

A mv_histogram object inherits the following struct classes:

```
[mv_histogram] » [chart] » [struct_class]
```

Examples

mv_sample_filter

Missing value sample filter

Description

Removes samples where the percent number of missing values exceeds a threshold.

mv_sample_filter 87

Usage

```
mv_sample_filter(mv_threshold = 20, ...)
```

Arguments

mv_threshold (numeric) The maximum percentage of features with missing values in a sample. The default is 20.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

pmp

Value

A mv_sample_filter object with the following output slots:

filtered (DatasetExperiment) A DatasetExperiment object containing the filtered data. flags (data.frame) A flag indicating whether the sample was rejected. 0 = rejected. percent_missing (data.frame) % missing values for each sample.

Inheritance

A mv_sample_filter object inherits the following struct classes:

```
[mv_sample_filter] » [model] » [struct_class]
```

References

Jankevics A, Lloyd GR, Weber RJM (2023). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. doi:10.18129/B9.bioc.pmp https://doi.org/10.18129/B9.bioc.pmp, R package version 1.14.0, https://bioconductor.org/packages/pmp.

88 nroot_transform

```
mv_sample_filter_hist Histogram of missing values per sample
```

Description

A histogram of the the proportion of missing values per sample

Usage

```
mv_sample_filter_hist(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A mv_sample_filter_hist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

```
A mv\_sample\_filter\_hist object inherits the following struct classes:
```

```
[mv_sample_filter_hist] » [chart] » [struct_class]
```

Examples

```
M = mv_sample_filter_hist()
C = mv_sample_filter_hist()
```

nroot_transform

nth root transform

Description

All values in the data matrix are transformed by raising them to the power of 1/n.

```
nroot_transform(root = 2, ...)
```

ontology_cache 89

Arguments

root (numeric) The nth root used for the transform. The default is 2.

... Additional slots and values passed to struct_class.

Value

A nroot_transform object with the following output slots:

transformed (DatasetExperiment) A DatasetExperiment object containing the nth root transformed data.

Inheritance

A nroot_transform object inherits the following struct classes:

```
[nroot_transform] » [model] » [struct_class]
```

Examples

ontology_cache

ontology cache

Description

A cached list of ontology terms obtained from the ontology lookup service (OLS) for ontology terms specified for objects in structToolbox.

Usage

```
ontology_cache()
```

Value

list of cached ontology terms

See Also

ontology

```
cache = ontology_cache()
```

90 OPLSDA

OPLSDA

Orthogonal Partial Least Squares regression

Description

OPLS splits a data matrix into two parts. One part contains information orthogonal to the input vector, and the other is non-orthogonal.

Usage

```
OPLSDA(number_components = 1, factor_name, ...)
```

Arguments

Value

A OPLSDA object with the following output slots:

```
opls_model (list)
filtered (DatasetExperiment)
orthogonal (DatasetExperiment)
```

Inheritance

A OPLSDA object inherits the following struct classes:

```
[OPLSDA] » [OPLSR] » [model] » [struct_class]
```

OPLSR 91

OPLSR

Orthogonal Partial Least Squares regression

Description

OPLS splits a data matrix into two parts. One part contains information orthogonal to the input vector, and the other is non-orthogonal.

Usage

```
OPLSR(number_components = 2, factor_name, ...)
```

Arguments

Value

A OPLSR object with the following output slots:

```
opls_model (list)
filtered (DatasetExperiment)
orthogonal (DatasetExperiment)
```

Inheritance

A OPLSR object inherits the following struct classes:

```
[OPLSR] » [model] » [struct_class]
```

92 pairs_filter

pairs_filter Pairs filter

Description

This filter is used for study designs with paired sampling to ensure that measurements from the same source (e.g. patient) are represented in all factor levels and interactions.

Usage

```
pairs_filter(factor_name, sample_id, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.

sample_id (character) Name of sample meta column containing sample identifiers.

Additional slots and values passed to struct_class.
```

Value

A pairs_filter object with the following output slots:

```
filtered (DatasetExperiment) A DatasetExperiment object after the filter has been applied.
flags (data.frame) A data.frame indicating whether features were filtered from the DatasetExperiment.
```

struct object

Inheritance

```
A pairs_filter object inherits the following struct classes:
```

```
[pairs_filter] » [model] » [struct_class]
```

```
M = pairs_filter(
    factor_name = "V1",
    sample_id = "V1")

M=pairs_filter(factor_name='Class',sample_id='ids')
```

pareto_scale 93

pareto_scale

Pareto scaling

Description

The mean sample is subtracted from all samples and then scaled by the square root of the standard deviation. The transformed data has zero mean.

Usage

```
pareto_scale(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A pareto_scale object with the following output slots:

```
scaled (DatasetExperiment)
mean (numeric)
sd (numeric)
```

Inheritance

A pareto_scale object inherits the following struct classes:

```
[pareto_scale] » [model] » [struct_class]
```

```
M = pareto_scale()
D = iris_DatasetExperiment()
M = pareto_scale()
M = model_train(M,D)
M = model_predict(M,D)
```

94 PCA

PCA

Principal Component Analysis (PCA)

Description

PCA is a multivariate data reduction technique. It summarises the data in a smaller number of Principal Components that maximise variance.

Usage

```
PCA(number_components = 2, ...)
```

Arguments

```
number_components
```

(numeric, integer) The number of Principal Components calculated. The default is 2.

... Additional slots and values passed to struct_class.

Value

A PCA object with the following output slots:

scores (DatasetExperiment) A matrix of PCA scores where each column corresponds to a Principal Component.

loadings (data.frame) eigenvalues (data.frame) ssx (numeric) correlation (data.frame)

that (DatasetExperiment)

Inheritance

A PCA object inherits the following struct classes:

```
[PCA] » [model] » [struct_class]
```

```
M = PCA(
     number_components = 2)
```

95 pca_biplot

pca_biplot

PCA biplot

Description

A scatter plot of the selected principal component scores overlaid with the corresponding principal component loadings.

Usage

```
pca_biplot(
  components = c(1, 2),
  points_to_label = "none",
  factor_name,
  scale_factor = 0.95,
  style = "points",
  label_features = FALSE,
)
```

Arguments

components

(numeric) The principal components used to generate the plot. The default is c(1, 2).

points_to_label

(character) points_to_label. Allowed values are limited to the following:

- "none": No samples are labelled on the plot.
- "all": All samples are labelled on the plot.
- "outliers": Potential outliers are labelled on the plot.

The default is "none".

factor_name

(character) The name of a sample-meta column to use.

scale_factor

(numeric) The scaling factor applied to the loadings. The default is 0.95.

style

(character) Plot style. Allowed values are limited to the following:

- "points": Loadings and scores are plotted as a scatter plot.
- "arrows": The loadings are plotted as arrow vectors.

The default is "points".

label_features (logical) Add feature labels. Allowed values are limited to the following:

- "TRUE": Features are labelled.
- "FALSE": Features are not labelled.

The default is FALSE.

Additional slots and values passed to struct_class.

96 pca_correlation_plot

Value

A pca_biplot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A pca_biplot object inherits the following struct classes:

```
[pca_biplot] » [chart] » [struct_class]
```

Examples

```
M = pca_biplot(
    components = c(1, 2),
    points_to_label = "none",
    factor_name = "V1",
    scale_factor = 0.95,
    style = "points",
    label_features = FALSE)

C = pca_biplot(factor_name='Species')
```

```
pca\_correlation\_plot PCA correlation plot
```

Description

A plot of the correlation between the variables/features and the selected principal component scores. Features with high correlation are well represented by the selected component(s)

Usage

```
pca_correlation_plot(components = c(1, 2), ...)
```

Arguments

```
components (numeric) The Principal Components used to generate the plot. The default is c(1, 2).... Additional slots and values passed to struct_class.
```

Value

A pca_correlation_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

pca_dstat_plot 97

Inheritance

```
A pca_correlation_plot object inherits the following struct classes:
```

```
[pca_correlation_plot] » [chart] » [struct_class]
```

Examples

pca_dstat_plot

d-statistic plot

Description

A bar chart of the d-statistics for samples in the input PCA model. Samples above the indicated threshold are considered to be outlying.

Usage

```
pca_dstat_plot(number_components = 2, alpha = 0.05, ...)
```

Arguments

number_components

(numeric) The number of principal components to use. The default is 2.

alpha

 $(numeric)\ A\ confidence\ threshold\ for\ rejecting\ samples\ based\ on\ the\ d\text{-}statistic.$

The default is 0.05.

... Additional slots and values passed to struct_class.

Value

A pca_dstat_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A pca_dstat_plot object inherits the following struct classes:

```
[pca_dstat_plot] » [chart] » [struct_class]
```

98 pca_loadings_plot

Examples

```
M = pca_dstat_plot(
      number_components = 2,
      alpha = 0.95)
C = pca_dstat_plot()
```

pca_loadings_plot

PCA loadings plot

Description

A barchart (one component) or scatter plot (two components) of the selected principal component loadings.

Usage

```
pca_loadings_plot(
  components = c(1, 2),
  style = "points",
 label_features = NULL,
)
```

Arguments

components

(numeric) The principal components used to generate the plot. The default is c(1, 2).

style

(character) Plot style. Allowed values are limited to the following:

- "points": Loadings and scores are plotted as a scatter plot.
- "arrows": The loadings are plotted as arrow vectors.

The default is "points".

label_features (character, NULL) Feature labels. Allowed values are limited to the following:

- "character()": A vector of labels for the features.
- "NULL": No labels.
- "row.names": Labels will be extracted from the column names of the data matrix.

The default is NULL.

Additional slots and values passed to struct_class.

Value

A pca_loadings_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

pca_scores_plot 99

Inheritance

A pca_loadings_plot object inherits the following struct classes:

```
[pca_loadings_plot] » [chart] » [struct_class]
```

Examples

pca_scores_plot

PCA scores plot

Description

Plots a 2d scatter plot of the selected components

Usage

```
pca_scores_plot(
    xcol = "PC1",
    ycol = "PC2",
    points_to_label = "none",
    factor_name,
    ellipse = "all",
    ellipse_type = "norm",
    ellipse_confidence = 0.95,
    label_filter = character(0),
    label_factor = "rownames",
    label_size = 3.88,
    components = NULL,
    ...
)
```

Arguments

```
    xcol (numeric, integer, character) The column name, or index, of data to plot on the x-axis. The default is "PC1".
    ycol (numeric, integer, character) The column name, or index, of data to plot on the y-axis. The default is "PC2".
    points_to_label
```

(character) Points to label. Allowed values are limited to the following:

• "none": No samples labels are displayed.

100 pca_scores_plot

- "all": The labels for all samples are displayed.
- "outliers": Labels for for potential outlier samples are displayed.

The default is "none".

factor_name

(character) The name of a sample-meta column to use.

ellipse

(character) Plot ellipses. Allowed values are limited to the following:

- "all": Ellipses are plotted for all groups and all samples.
- "group": Ellipses are plotted for all groups.
- "none": Ellipses are not included on the plot.
- "sample": An ellipse is plotted for all samples (ignoring group).

The default is "all".

ellipse_type

(character) Type of ellipse. Allowed values are limited to the following:

- "norm": Multivariate normal (p = 0.95).
- "t": Multivariate t (p = 0.95).

The default is "norm".

ellipse_confidence

(numeric) The confidence level for plotting ellipses. The default is 0.95.

label_filter

groups are included. The default is character(0).

label_factor

(character) The column name of sample_meta to use for labelling samples on the plot. "rownames" will use the row names from sample_meta. The default is

(character) Labels are only plotted for the named groups. If zero-length then all

"rownames".

label size

(numeric) The text size of labels. Note this is not in Font Units. The default is 3.88.

components

(numeric, integer, NULL) The principal components used to generate the plot. If provided this parameter overrides xcol and ycol params. The default is NULL.

... Additional slots and values passed to struct_class.

Value

A pca_scores_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A pca_scores_plot object inherits the following struct classes:

[pca_scores_plot] » [scatter_chart] » [chart] » [struct_class]

pca_scree_plot 101

Examples

```
M = pca_scores_plot(
      components = NULL,
      xcol = 1,
      ycol = 2,
      points_to_label = "none",
      factor_name = "V1",
      ellipse = "all",
      label_filter = character(0),
      label_factor = "rownames",
      label_size = 3.88,
      ellipse_type = "norm",
      ellipse_confidence = 0.95)
D = iris_DatasetExperiment()
M = mean_centre() + PCA()
M = model_apply(M,D)
C = pca_scores_plot(factor_name = 'Species')
chart_plot(C,M[2])
```

pca_scree_plot

Scree plot

Description

A plot of the percent variance and cumulative percent variance for the components of a PCA model.

Usage

```
pca_scree_plot(max_pc = 15, ...)
```

Arguments

max_pc

(numeric, integer) The maximum number of components to include in the plot.

The default is 15.

... Additional slots and values passed to struct_class.

Value

A pca_scree_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

struct object

Inheritance

A pca_scree_plot object inherits the following struct classes:

```
[pca_scree_plot] » [chart] » [struct_class]
```

102 permutation_test

Examples

permutation_test

Permutation test

Description

A permutation test generates a "null" model by randomising the response (for regression models) or group labels (for classification models). This is repeated many times to generate a distribution of performance metrics for the null model. This distribution can then be compared to the performance of the true model. If there is overlap between the true and null model performances then the model is overfitted.

Usage

```
permutation_test(number_of_permutations = 50, factor_name, ...)
```

Arguments

```
number_of_permutations
(numeric, integer) The number of permutations. The default is 50.

factor_name (character) The name of a sample-meta column to use.

Additional slots and values passed to struct_class.
```

Value

A permutation_test object with the following output slots:

```
results.permuted (data.frame)
results.unpermuted (data.frame)
metric (data.frame)
```

Inheritance

A permutation_test object inherits the following struct classes:

```
[permutation_test] » [resampler] » [iterator] » [struct_class]
```

permutation_test_plot 103

Examples

```
permutation_test_plot permutation_test_plot class
```

Description

Plots the results of a permutation test.

Usage

```
permutation_test_plot(style = "boxplot", binwidth = 0.05, ...)
```

Arguments

```
style The plot style. One of 'boxplot', 'violin', 'histogram', 'density' or 'scatter'.

binwidth Binwidth for the "histogram" style. Ignored for all other styles.

... additional slots and values passed to struct_class
```

Value

struct object

Examples

```
C = permutation_test_plot(style='boxplot')
```

Description

The order of samples in the data matrix is randomly permuted. The relationship between the samples and the sample meta data is maintained.

```
permute_sample_order(number_of_permutations = 10, ...)
```

104 PLSDA

Arguments

```
number_of_permutations
```

(numeric, integer) The number of times the sample order is permuted. The default is 10.

... Additional slots and values passed to struct_class.

Value

A permute_sample_order object with the following output slots:

```
results (data.frame)
metric (data.frame)
metric.train (numeric)
```

Inheritance

```
A permute_sample_order object inherits the following struct classes:
```

```
[permute_sample_order] » [resampler] » [iterator] » [struct_class]
```

Examples

PLSDA

Partial least squares discriminant analysis

Description

PLS is a multivariate regression technique that extracts latent variables maximising covariance between the input data and the response. The Discriminant Analysis variant uses group labels in the response variable. For >2 groups a 1-vs-all approach is used. Group membership can be predicted for test samples based on a probability estimate of group membership, or the estimated y-value.

```
PLSDA(number_components = 2, factor_name, pred_method = "max_prob", ...)
```

PLSDA 105

Arguments

number_components

(numeric, integer) The number of PLS components. The default is 2.

factor_name (character) The name of a sample-meta column to use.

pred_method (character) Prediction method. Allowed values are limited to the following:

- "max_yhat": The predicted group is selected based on the largest value of y_hat.
- "max_prob": The predicted group is selected based on the largest probability of group membership.

The default is "max_prob".

Additional slots and values passed to struct_class. . . .

Details

This object makes use of functionality from the following packages:

• pls

Value

A PLSDA object with the following output slots:

(DatasetExperiment) scores (data.frame) loadings yhat (data.frame) design_matrix (data.frame) (data.frame) (data.frame) reg_coeff probability (data.frame) (data.frame) vip pls_model (list) pred (data.frame) threshold (numeric)

(data.frame) Selectivity ratio for a variable represents a measure of a variable's importance in the PLS mod sr

sr_pvalue (data.frame) A p-value computed from the Selectivity Ratio based on an F-distribution.

Inheritance

A PLSDA object inherits the following struct classes:

```
[PLSDA] » [PLSR] » [model] » [struct_class]
```

References

Liland K, Mevik B, Wehrens R (2023). pls: Partial Least Squares and Principal Component Regression. R package version 2.8-3, https://CRAN.R-project.org/package=pls.

Perez NF, Ferre J, Boque R (2009). "Calculation of the reliability of classification in discriminant partial least-squares binary classification." *Chemometrics and Intelligent Laboratory Systems*, 95(2), 122-128.

Barker M, Rayens W (2003). "Partial least squares for discrimination." *Journal of Chemometrics*, 17(3), 166-173.

Examples

```
plsda_feature_importance_plot

PLSDA feature importance summary plot
```

Description

A plot of the selected feature significance metric for a PLSDA model for the top selected features.

Usage

```
plsda_feature_importance_plot(n_features = 30, metric = "vip", ...)
```

Arguments

n_features (numeric, integer) The number of features to include in the summary. The default is 30.

metric (character) Metric to plot. Allowed values are limited to the following:

- "sr": Plot Selectivity Ratio.
- "sr_pvalue": Plot SR p-values.
- "vip": Plot Variable Importance in Projection scores.

The default is "vip".

.. Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- pls
- ggplot2
- reshape2
- cowplot

Value

A plsda_feature_importance_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A plsda_feature_importance_plot object inherits the following struct classes:

```
[plsda_feature_importance_plot] » [chart] » [struct_class]
```

References

Liland K, Mevik B, Wehrens R (2023). pls: Partial Least Squares and Principal Component Regression. R package version 2.8-3, https://CRAN.R-project.org/package=pls.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Wickham H (2007). "Reshaping Data with the reshape Package." *Journal of Statistical Software*, 21(12), 1-20. http://www.jstatsoft.org/v21/i12/.

Wilke C (2023). *cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2*'. R package version 1.1.2, https://CRAN.R-project.org/package=cowplot.

108 plsda_predicted_plot

Description

A plot of the regression coefficients from a PLSDA model.

Usage

```
plsda_predicted_plot(factor_name, style = "boxplot", ycol = 1, ...)
```

Arguments

factor_name (character) The name of a sample-meta column to use.

style (character) Plot style. Allowed values are limited to the following:

• "boxplot": A boxplot.

• "violin": A violin plot.

• "density": A density plot.

The default is "boxplot".

ycol (character, numeric, integer) The column of the Y block to be plotted. The default is 1.

Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- pls
- ggplot2

Value

A plsda_predicted_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A plsda_predicted_plot object inherits the following struct classes:

```
[plsda_predicted_plot] » [chart] » [struct_class]
```

plsda_roc_plot 109

References

Liland K, Mevik B, Wehrens R (2023). pls: Partial Least Squares and Principal Component Regression. R package version 2.8-3, https://CRAN.R-project.org/package=pls.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Examples

```
M = plsda_predicted_plot(
    factor_name = "V1",
    style = "boxplot",
    ycol = 1)

D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)

C = plsda_predicted_plot(factor_name='Species')
chart_plot(C,M[2])
```

plsda_roc_plot

PLSDA ROC plot

Description

A Receiver Operator Characteristic (ROC) plot for PLSDA models computed by adjusting the threshold for assigning group labels from PLS predictions.

Usage

```
plsda_roc_plot(factor_name, ycol = 1, ...)
```

Arguments

factor_name (character) The name of a sample-meta column to use.

ycol (character, numeric, integer) The column of the Y block to be plotted. The default is 1.

Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- pls
- ggplot2

110 PLSR

Value

A plsda_roc_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

```
A plsda_roc_plot object inherits the following struct classes:
```

```
[plsda_roc_plot] » [chart] » [struct_class]
```

References

Liland K, Mevik B, Wehrens R (2023). pls: Partial Least Squares and Principal Component Regression. R package version 2.8-3, https://CRAN.R-project.org/package=pls.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Examples

```
M = plsda_roc_plot(
    factor_name = "V1",
    ycol = 1)

D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)

C = plsda_roc_plot(factor_name='Species')
chart_plot(C,M[2])
```

PLSR

Partial least squares regression

Description

PLS is a multivariate regression technique that extracts latent variables maximising covariance between the input data and the response. For regression the response is a continuous variable.

Usage

```
PLSR(number_components = 2, factor_name, ...)
```

Arguments

```
number_components
(numeric, integer) The number of PLS components. The default is 2.

factor_name
(character) The name of sample meta column(s) to use.

Additional slots and values passed to struct_class.
```

plsr_cook_dist

Details

This object makes use of functionality from the following packages:

```
• pls
```

Value

A PLSR object with the following output slots:

```
scores (DatasetExperiment)
loadings (data.frame)
yhat (data.frame)
y (data.frame)
reg_coeff (data.frame)
vip (data.frame)
pls_model (list)
pred (data.frame)
sr (data.frame)
Selectiv
```

sr (data.frame) Selectivity ratio for a variable represents a measure of a variable's importance in the PLS model. The sr_pvalue (data.frame) A p-value computed from the Selectivity Ratio based on an F-distribution.

Inheritance

A PLSR object inherits the following struct classes:

```
[PLSR] » [model] » [struct_class]
```

References

Liland K, Mevik B, Wehrens R (2023). pls: Partial Least Squares and Principal Component Regression. R package version 2.8-3, https://CRAN.R-project.org/package=pls.

Examples

plsr_cook_dist

Cook's distance barchart

Description

A barchart of Cook's distance for each sample used to train a PLSR model. Cook's distance is used to estimate the influence of a sample on the model and can be used to identify potential outliers.

plsr_prediction_plot

Usage

```
plsr_cook_dist(ycol = 1, ...)
```

Arguments

ycol (numeric, integer, character) The y-block column to plot. The default is 1.

... Additional slots and values passed to struct_class.

Value

A plsr_cook_dist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A plsr_cook_dist object inherits the following struct classes:

```
[plsr_cook_dist] » [chart] » [struct_class]
```

Examples

plsr_prediction_plot PLSR prediction plot

Description

A scatter plot of the true response values against the predicted values for a PLSR model.

Usage

```
plsr_prediction_plot(ycol = 1, ...)
```

Arguments

ycol (numeric, integer, character) The y-block column to plot. The default is 1.

... Additional slots and values passed to struct_class.

Value

A plsr_prediction_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

plsr_qq_plot 113

Inheritance

A plsr_prediction_plot object inherits the following struct classes:

```
[plsr_prediction_plot] » [chart] » [struct_class]
```

Examples

plsr_qq_plot

PLSR QQ plot

Description

A plot of the quantiles of the residuals from a PLSR model against the quantiles of a normal distribution.

Usage

```
plsr_qq_plot(ycol = 1, ...)
```

Arguments

ycol (numeric, integer, character) The y-block column to plot. The default is 1.

... Additional slots and values passed to struct_class.

Value

A plsr_qq_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A plsr_qq_plot object inherits the following struct classes:

```
[plsr_qq_plot] » [chart] » [struct_class]
```

Examples

pls_regcoeff_plot

plsr_residual_hist

PLSR residuals histogram

Description

A histogram of the residuals for a PLSR model.

Usage

```
plsr_residual_hist(ycol = 1, ...)
```

Arguments

ycol (numeric, integer, character) The y-block column to plot. The default is 1.

... Additional slots and values passed to struct_class.

Value

A plsr_residual_hist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

```
A plsr_residual_hist object inherits the following struct classes:
```

```
[plsr_residual_hist] » [chart] » [struct_class]
```

Examples

pls_regcoeff_plot

pls_regcoeff_plot class

Description

Plots the regression coefficients of a PLSDA model.

Plots the regression coefficient scores of a PLSDA model

Usage

```
pls_regcoeff_plot(ycol = 1, ...)
```

pls_regcoeff_plot 115

Arguments

```
ycol (character, numeric, integer) The Y column to plot. The default is 1.
... additional slots and values passed to struct_class
```

Details

This object makes use of functionality from the following packages:

- pls
- ggplot2

Value

A pls_regcoeff_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

struct object

Inheritance

A pls_regcoeff_plot object inherits the following struct classes:

```
[pls_regcoeff_plot] » [chart] » [struct_class]
```

References

Liland K, Mevik B, Wehrens R (2023). pls: Partial Least Squares and Principal Component Regression. R package version 2.8-3, https://CRAN.R-project.org/package=pls.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Examples

pls_scores_plot

pls_scores_plot

PLSDA scores plot

Description

A scatter plot of the selected PLSDA scores.

Usage

```
pls_scores_plot(
  xcol = "LV1",
  ycol = "LV2",
  points_to_label = "none",
  factor_name,
  ellipse = "all",
  ellipse_type = "norm",
  ellipse_confidence = 0.95,
  label_filter = character(0),
  label_factor = "rownames",
  label_size = 3.88,
  components = NULL,
)
plsda_scores_plot(
  xcol = "LV1",
  ycol = "LV2",
  points_to_label = "none",
  factor_name,
  ellipse = "all",
  ellipse_type = "norm",
  ellipse_confidence = 0.95,
  label_filter = character(0),
  label_factor = "rownames",
  label_size = 3.88,
  components = NULL,
)
```

Arguments

```
    xcol (numeric, integer, character) The column name, or index, of data to plot on the x-axis. The default is "LV1".
    ycol (numeric, integer, character) The column name, or index, of data to plot on the y-axis. The default is "LV2".
    points_to_label
```

(character) Points to label. Allowed values are limited to the following:

pls_scores_plot 117

- "none": No samples labels are displayed.
- "all": The labels for all samples are displayed.
- "outliers": Labels for for potential outlier samples are displayed.

The default is "none".

factor_name

(character) The name of a sample-meta column to use.

ellipse

(character) Plot ellipses. Allowed values are limited to the following:

- "all": Ellipses are plotted for all groups and all samples.
- "group": Ellipses are plotted for all groups.
- "none": Ellipses are not included on the plot.
- "sample": An ellipse is plotted for all samples (ignoring group).

The default is "all".

ellipse_type

(character) Type of ellipse. Allowed values are limited to the following:

- "norm": Multivariate normal (p = 0.95).
- "t": Multivariate t (p = 0.95).

The default is "norm".

ellipse_confidence

(numeric) The confidence level for plotting ellipses. The default is 0.95.

label_filter

(character) Labels are only plotted for the named groups. If zero-length then all groups are included. The default is character(0).

label_factor

(character) The column name of sample_meta to use for labelling samples on the plot. "rownames" will use the row names from sample_meta. The default is

"rownames".

label_size

(numeric) The text size of labels. Note this is not in Font Units. The default is 3.88.

components

(numeric, integer, NULL) The principal components used to generate the plot. If provided this parameter overrides xcol and ycol params. The default is NULL.

... Additional slots and values passed to struct_class.

Value

A pls_scores_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A pls_scores_plot object inherits the following struct classes:

[pls_scores_plot] » [scatter_chart] » [chart] » [struct_class]

pls_vip_plot

Examples

```
M = pls_scores_plot(
      components = NULL,
      xcol = 1,
      ycol = 2,
      points_to_label = "none",
      factor_name = "V1",
      ellipse = "all",
      label_filter = character(0),
      label_factor = "rownames",
      label_size = 3.88,
      ellipse_type = "norm",
      ellipse_confidence = 0.95)
D = iris_DatasetExperiment()
M = mean_centre()+PLSDA(factor_name='Species')
M = model_apply(M,D)
C = pls_scores_plot(factor_name='Species')
chart_plot(C,M[2])
```

pls_vip_plot

PLSDA VIP plot

Description

A plot of the Variable Importance for Projection (VIP) scores for a PLSDA model.

Usage

```
pls_vip_plot(threshold = 1, ycol = 1, ...)
```

Arguments

threshold (numeric, integer) The threshold for indicating significant features. The default is 1.

ycol (character, numeric, integer) The column of the Y block to be plotted. The default is 1.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

- pls
- ggplot2

pqn_norm 119

Value

A pls_vip_plot object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A pls_vip_plot object inherits the following struct classes:

```
[pls_vip_plot] » [chart] » [stato] » [struct_class]
```

References

Liland K, Mevik B, Wehrens R (2023). pls: Partial Least Squares and Principal Component Regression. R package version 2.8-3, https://CRAN.R-project.org/package=pls.

Wickham H (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Examples

pqn_norm

Probabilistic Quotient Normalisation (PQN)

Description

PQN is used to normalise for differences in concentration between samples. It makes use of Quality Control (QC) samples as a reference. PQN scales by the median change relative to the reference in order to be more robust against changes caused by response to perturbation.

Usage

```
pqn_norm(
  qc_label = "QC",
  factor_name,
  qc_frac = 0,
  sample_frac = 0,
  ref_method = "mean",
  ref_mean = NULL,
```

pqn_norm

```
)
```

Arguments

qc_label (character) The label used to identify QC samples. The default is "QC".

factor_name (character) The name of a sample-meta column to use.

qc_frac (numeric) A value between 0 and 1 to indicate the minimum proportion of QC samples a feature must be present in for it to be included when computing the

reference. Default $qc_frac = 0$. The default is 0.

sample_frac (numeric) A value between 0 and 1 to indicate the minimum proportion of sam-

ples a feature must be present in for it to be considered when computing the

normalisation coefficients. . The default is $\boldsymbol{\theta}$.

ref_method (character) Reference computation method. Allowed values are limited to the

following:

• "mean": The reference is computed as the mean of the samples matching

the qc_label input.

• "median": The reference is computed as the median of the samples match-

ing the qc_label_input.

The default is "mean".

ref_mean (numeric, NULL) A single sample to use as the reference for normalisation.

If set to NULL then the reference will be computed based on the other input

parameters (ref_mean, qc_label etc). . The default is NULL.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

pmp

Value

A pqn_norm object with the following output slots:

normalised (DatasetExperiment) A DatasetExperiment object containing the normalised data. coeff (data.frame) The normalisation coefficients calculated by PQN.

Inheritance

A pqn_norm object inherits the following struct classes:

```
[pqn_norm] » [model] » [struct_class]
```

pqn_norm_hist 121

References

Jankevics A, Lloyd GR, Weber RJM (2023). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. doi:10.18129/B9.bioc.pmp https://doi.org/10.18129/B9.bioc.pmp, R package version 1.14.0, https://bioconductor.org/packages/pmp.

Examples

```
M = pqn_norm(
    qc_label = "QC",
    factor_name = "V1",
    qc_frac = 0,
    sample_frac = 0,
    ref_mean = NULL,
    ref_method = "mean")

D = iris_DatasetExperiment()
M = pqn_norm(factor_name='Species',qc_label='all')
M = model_apply(M,D)
```

pqn_norm_hist

PQN coefficient histogram

Description

A histogram of the PQN coefficients for all features

Usage

```
pqn_norm_hist(...)
```

Arguments

.. Additional slots and values passed to struct_class.

Value

A pqn_norm_hist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A pqn_norm_hist object inherits the following struct classes:

```
[pqn_norm_hist] » [chart] » [struct_class]
```

prop_na

Examples

```
M = pqn_norm_hist()
C = pqn_norm_hist()
```

prop_na

Fisher's exact test for missing values

Description

A Fisher's exact test is used to compare the number of missing values in each group. Multiple test corrected p-values are computed to indicate whether there is a significant difference in the number of missing values across groups for each feature.

Usage

```
prop_na(alpha = 0.05, mtc = "fdr", factor_name, ...)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc (character) Multiple test correction method. Allowed values are limited to the following:

• "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.

• "fdr": Benjamini and Hochberg False Discovery Rate correction.

• "none": No correction.

The default is "fdr".

factor_name (character) The name of a sample-meta column to use.

... Additional slots and values passed to struct_class.

Value

A prop_na object with the following output slots:

```
p_value (data.frame) The probability of observing the calculated statistic.
significant (data.frame) TRUE if the calculated p-value is less than the supplied threshold (alpha).
(data.frame) The number of NA values per group of the chosen factor.
```

struct object

resample 123

Inheritance

A prop_na object inherits the following struct classes:

```
[prop_na] » [model] » [struct_class]
```

Examples

```
M = prop_na(
    alpha = 0.05,
    mtc = "fdr",
    factor_name = "V1")

M = prop_na(factor_name='Species')
```

resample

Data resampling

Description

New training sets are generated from the original data by selecting samples at random. This can be based on levels in a factor or on the whole dataset.

Usage

```
resample(
  number_of_iterations = 10,
  method = "split_data",
  factor_name,
  p_train = 0.8,
  collect = NULL,
  ...
)
```

Arguments

number_of_iterations

(numeric, integer) The number of training sets to generate. The default is 10.

method

(character) Resampling method. Allowed values are limited to the following:

- "split_data": Samples for the training set are selected at random from the full dataset.
- "stratified_split": Samples for the training set are randomly selected from each level of the chosen factor.
- "equal_split": Samples for the training set are selected at random from each level of the main factor such that all group sizes are equal.

124 resample

```
The default is "split_data".

factor_name (character) The name of a sample-meta column to use.

p_train (numeric) The proportion of samples selected for the training set. The default is 0.8.

collect (NULL, character) The name of a model output to collect over all bootstrap repetitions, in addition to the input metric. The default is NULL.

Additional slots and values passed to struct_class.
```

Value

A resample object with the following output slots:

```
results.training (data.frame)
results.testing (data.frame)
metric (data.frame)
collected (list)
metric.train (numeric)
metric.test (numeric)
```

Inheritance

A resample object inherits the following struct classes:

```
[resample] » [resampler] » [iterator] » [struct_class]
```

Examples

```
M = resample(
    number_of_iterations = 100,
    method = "split_data",
    factor_name = "V1",
    p_train = 0.75,
    collect = NULL)

I = resample(
    number_of_iterations = 10,
    factor_name = 'Species',
    method = 'split_data',
    p_train = 0.8)
```

resample_chart 125

resample_chart	resample_chart class	
----------------	----------------------	--

Description

Plots the results of a resampling.

Usage

```
resample_chart(style = "boxplot", binwidth = 0.05, ...)
```

Arguments

```
style The plot style. One of 'boxplot', 'violin', 'histogram', 'density' or 'scatter'.

binwidth Binwidth for the "histogram" style. Ignored for all other styles.

additional slots and values passed to struct_class
```

Value

struct object

Examples

```
C = resample_chart(style='boxplot')
```

```
rsd_filter RSD filter
```

Description

An RSD filter calculates the relative standard deviation (the ratio of the standard deviation to the mean) for all features. Any feature with an RSD greater than a predefined threshold is excluded.

Usage

```
rsd_filter(rsd_threshold = 20, qc_label = "QC", factor_name, ...)
```

Arguments

```
rsd_threshold (numeric) The RSD threshold above which features are removed. The default is 20.

qc_label (character) The label used to identify QC samples. The default is "QC".

factor_name (character) The name of a sample-meta column to use.

Additional slots and values passed to struct_class.
```

126 rsd_filter_hist

Details

This object makes use of functionality from the following packages:

```
    pmp
```

Value

A rsd_filter object with the following output slots:

```
filtered (DatasetExperiment) A DatasetExperiment object containing the filtered data.

flags (data.frame) RSD and a flag indicating whether the feature was rejected by the filter or not.

rsd_qc (data.frame) The calculated RSD of the QC class.
```

Inheritance

```
A rsd_filter object inherits the following struct classes:
```

```
[rsd_filter] » [model] » [struct_class]
```

References

Jankevics A, Lloyd GR, Weber RJM (2023). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. doi:10.18129/B9.bioc.pmp https://doi.org/10.18129/B9.bioc.pmp, R package version 1.14.0, https://bioconductor.org/packages/pmp.

Examples

```
rsd_filter_hist
```

RSD histogram

Description

A histogram of the calculated RSD values.

Usage

```
rsd_filter_hist(...)
```

Arguments

.. Additional slots and values passed to struct_class.

Value

A rsd_filter_hist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A rsd_filter_hist object inherits the following struct classes:

```
[rsd_filter_hist] » [chart] » [struct_class]
```

Examples

```
M = rsd_filter_hist()
C = rsd_filter_hist()
```

run,bootstrap,DatasetExperiment,metric-method

Runs an iterator, applying the chosen model multiple times.

Description

Running an iterator will apply the iterator a number of times to a DatasetExperiment. For example, in cross-validation the same model is applied multiple times to the same data, splitting it into training and test sets. The input metric object can be calculated and collected for each iteration as an output.

Usage

```
## S4 method for signature 'bootstrap,DatasetExperiment,metric'
run(I, D, MET = NULL)

## S4 method for signature 'forward_selection_by_rank,DatasetExperiment,metric'
run(I, D, MET)

## S4 method for signature 'grid_search_1d,DatasetExperiment,metric'
run(I, D, MET)

## S4 method for signature 'kfold_xval,DatasetExperiment,metric'
run(I, D, MET = NULL)

## S4 method for signature 'permutation_test,DatasetExperiment,metric'
```

128 r_squared

```
run(I, D, MET = NULL)
## S4 method for signature 'permute_sample_order,DatasetExperiment,metric'
run(I, D, MET)
## S4 method for signature 'resample,DatasetExperiment,metric'
run(I, D, MET)
```

Arguments

I an iterator object

D a DatasetExperiment object

MET a metric object

Value

Modified iterator object

Examples

```
D = iris_DatasetExperiment() # get some data
MET = metric() # use a metric
I = example_iterator() # initialise iterator
models(I) = example_model() # set the model
I = run(I,D,MET) # run
```

r_squared

Coefficient of determination (R-squared)

Description

R-squared is a metric used to assess the goodness of fit for regression models. It measures how much variance of one variable can be explained by another variable.

Usage

```
r_squared(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A r_squared object. This object has no output slots.

sb_corr 129

Inheritance

A r_squared object inherits the following struct classes:

```
[r_squared] » [metric] » [struct_class]
```

Examples

```
M = r_squared()

MET = r_squared()
```

sb_corr

Signal/batch correction for mass spectrometry data

Description

Applies Quality Control Robust Spline (QC-RSC) method to correct for signal drift and batch differences in mass spectrometry data.

Usage

```
sb_corr(
   order_col,
   batch_col,
   qc_col,
   smooth = 0,
   use_log = TRUE,
   min_qc = 4,
   qc_label = "QC",
   spar_lim = c(-1.5, 1.5),
   ...
)
```

Arguments

order_col	(character) The column name of sample_meta indicating the run order of the samples.
batch_col	(character) The column name of sample_meta indicating the batch each sample was measured in.
qc_col	(character) The column name of sample_meta indicating the group each sample is a member of.
smooth	(numeric) The amount of smoothing applied (0 to 1). If set to 0 the smoothing parameter will be estimated using leave-one-out cross-validation. The default is \emptyset .

sb_corr

(logical) Log tranformation. Allowed values are limited to the following:

 "TRUE": The data is log transformed prior to performing signal correction.
 "FALSE": Signal correction is applied to the input data.

 The default is TRUE.
 min_qc

 (numeric) The minimum number of QC samples required for signal correction. The default is 4.

 qc_label

 (character) The label used to identify QC samples. The default is "QC".

 spar_lim

 (numeric) A two element vector specifying the upper and lower limits when spar = 0. Allows the value of spar to be constrained within these limits to prevent overfitting. The default is c(-1.5, 1.5).

 Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

pmp

Value

A sb_corr object with the following output slots:

corrected (DatasetExperiment) The DatasetExperiment after signal/batch correction has been applied. fitted (data.frame) The fitted splines for each feature.

struct object

Inheritance

A sb_corr object inherits the following struct classes:

```
[sb_corr] » [model] » [struct_class]
```

References

Jankevics A, Lloyd GR, Weber RJM (2023). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. doi:10.18129/B9.bioc.pmp https://doi.org/10.18129/B9.bioc.pmp, R package version 1.14.0, https://bioconductor.org/packages/pmp.

Kirwan JA, Broadhurst DI, Davidson RL, Viant MR (2013). "Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow." *Analytical and Bioanalytical Chemistry*, 405(15), 5147-5157.

scatter_chart 131

Examples

```
M = sb_corr(
    order_col = character(0),
    batch_col = character(0),
    qc_col = character(0),
    smooth = 0,
    use_log = FALSE,
    min_qc = 4,
    qc_label = "QC",
    spar_lim = c(-1.5, 1.5))
M = sb_corr(order_col='run_order',batch_col='batch_no',qc_col='class')
```

scatter_chart

Group scatter chart

Description

Plots a 2d scatter plot of the input data.

Usage

```
scatter_chart(
   xcol = 1,
   ycol = 2,
   points_to_label = "none",
   factor_name = "none",
   ellipse = "all",
   ellipse_type = "norm",
   ellipse_confidence = 0.95,
   label_filter = character(0),
   label_factor = "rownames",
   label_size = 3.88,
   ...
)
```

Arguments

xcol (numeric, integer, character) The column name, or index, of data to plot on the x-axis. The default is 1.

ycol (numeric, integer, character) The column name, or index, of data to plot on the y-axis. The default is 2.

points_to_label

(character) Points to label. Allowed values are limited to the following:

• "none": No samples labels are displayed.

scatter_chart

- "all": The labels for all samples are displayed.
- "outliers": Labels for for potential outlier samples are displayed.

The default is "none".

factor_name

(character) The name of a sample-meta column to use. The default is "none".

ellipse

(character) Plot ellipses. Allowed values are limited to the following:

- "all": Ellipses are plotted for all groups and all samples.
- "group": Ellipses are plotted for all groups.
- "none": Ellipses are not included on the plot.
- "sample": An ellipse is plotted for all samples (ignoring group).

The default is "all".

ellipse_type

(character) Type of ellipse. Allowed values are limited to the following:

- "norm": Multivariate normal (p = 0.95).
- "t": Multivariate t (p = 0.95).

The default is "norm".

ellipse_confidence

(numeric) The confidence level for plotting ellipses. The default is 0.95.

label_filter

groups are included. The default is character(0).

label_factor

(character) The column name of sample_meta to use for labelling samples on the plot. "rownames" will use the row names from sample_meta. The default is

(character) Labels are only plotted for the named groups. If zero-length then all

"rownames".

label_size

(numeric) The text size of labels. Note this is not in Font Units. The default is

3.88.

... Additional slots and values passed to struct_class.

Value

A scatter_chart object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A scatter_chart object inherits the following struct classes:

```
[scatter_chart] » [chart] » [struct_class]
```

Examples

```
M = scatter_chart(
     xcol = 1,
     ycol = 2,
     points_to_label = "none",
     factor_name = "V1",
```

split_data 133

split_data

Split data

Description

The data matrix is divided into two subsets. A predefined proportion of the samples are randomly selected for a training set, and the remaining samples are used for the test set.

Usage

```
split_data(p_train, ...)
```

Arguments

p_train (numeric) The proportion of samples selected for the training set.... Additional slots and values passed to struct_class.

Value

A split_data object with the following output slots:

training (DatasetExperiment) A DatasetExperiment object containing samples selected for the training set. testing (DatasetExperiment) A DatasetExperiment object containing samples selected for the testing set.

Inheritance

A split_data object inherits the following struct classes:

```
[split_data] » [model] » [struct_class]
```

134 stratified_split

Examples

stratified_split

Stratified sampling

Description

The dataset is divided into two subsets. A predefined proportion of samples from each level of a factor is selected for the training set, and the remaining samples are used for the test set. The stratification by factor level means that the relative number of samples per level is approximately equal to the original dataset.

Usage

```
stratified_split(p_train, factor_name, ...)
```

Arguments

```
p_train (numeric) The proportion of samples selected for the training set.

factor_name (character) The name of a sample-meta column to use.

Additional slots and values passed to struct_class.
```

Value

A stratified_split object with the following output slots:

```
training (DatasetExperiment) A DatasetExperiment object containing samples selected for the training set. testing (DatasetExperiment) A DatasetExperiment object containing samples selected for the testing set.
```

Inheritance

```
A stratified_split object inherits the following struct classes:
```

```
[stratified_split] » [split_data] » [model] » [struct_class]
```

structToolbox 135

Examples

```
M = stratified_split(
    factor_name = "V1",
    p_train = 0.75)

D = iris_DatasetExperiment()
M = stratified_split(p_train=0.75,factor_name='Species')
M = model_apply(M,D)
```

structToolbox

structToolbox: Examples of tools built using the Statistics in R Using Class Templates (struct) package

Description

This package extends the classes defined in the struct package

SVM

Support Vector Machine Classifier

Description

Support Vector Machines (SVM) are a machine learning algorithm for classification. They can make use of kernel functions to generate highly non-linear boundaries between groups.

Usage

```
SVM(
  factor_name,
  kernel = "linear",
  degree = 3,
  gamma = 1,
  coef0 = 0,
  cost = 1,
  class_weights = NULL,
  ...
)
```

136 SVM

Arguments

factor_name (character) The name of a sample-meta column to use.

kernel (character) Kernel type. Allowed values are limited to the following:

• "linear":.

• "polynomial":.

• "radial":.

• "sigmoid":.

The default is "linear".

degree (numeric) The polynomial degree. The default is 3.

gamma (numeric) The gamma parameter. The default is 1.

coef0 (numeric) The offset coefficient. The default is 0.

cost (numeric) The cost of violating the constraints. The default is 1.

class_weights (numeric, character, NULL) A named vector of weights for the different classes.

Specifying "inverse" will choose the weights inversely proportional to the class

distribution. The default is NULL.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• e1071

Value

A SVM object with the following output slots:

SV (matrix)
index (numeric)
coefs (matrix)
pred (data.frame)
decision_values (data.frame)

struct object

Inheritance

A SVM object inherits the following struct classes:

```
[SVM] » [model] » [struct_class]
```

svm_plot_2d 137

References

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2023). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-14, https://CRAN.R-project.org/package=e1071.

Brereton RG, Lloyd GR (2010). "Support Vector Machines for classification and regression." *The Analyst*, 135(2), 230-267.

Examples

```
M = SVM(
    factor_name = "V1",
    kernel = "linear",
    degree = 3,
    gamma = 1,
    coef0 = 0,
    cost = 1,
    class_weights = 1)

M = SVM(factor_name='Species',gamma=1)
```

 svm_plot_2d

SVM scatter plot

Description

A scatter plot of the input data by group and the calculated boundary of a SVM model.

Usage

```
svm_plot_2d(factor_name, npoints = 100, ...)
```

Arguments

factor_name (character) The name of a sample-meta column to use.

npoints (numeric) The number of grid points used to plot the boundary. The default is 100.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• e1071

Value

A svm_plot_2d object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

tic_chart

Inheritance

A svm_plot_2d object inherits the following struct classes:

```
[svm_plot_2d] » [chart] » [struct_class]
```

References

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2023). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-14, https://CRAN.R-project.org/package=e1071.

Examples

```
M = svm_plot_2d(
    factor_name = "V1",
    npoints = 100)

D = iris_DatasetExperiment()
M = filter_smeta(mode='exclude',levels='setosa',factor_name='Species') +
    mean_centre()+PCA(number_components=2)+
    SVM(factor_name='Species',kernel='linear')
M = model_apply(M,D)

C = svm_plot_2d(factor_name='Species')
chart_plot(C,M[4],predicted(M[3]))
```

tic_chart

Total Ion Count chart.

Description

A scatter plot of Total Ion Count (sum of each sample) versus run order.

Usage

```
tic_chart(run_order, factor_name, connected = FALSE, ...)
```

Arguments

```
run_order (character) The column name of sample_meta indicating the run order of the samples.

factor_name (character) The name of a sample-meta column to use.

connected (logical) Plot samples connected by a grey line. The default is FALSE.

Additional slots and values passed to struct_class.
```

tSNE

Value

A tic_chart object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A tic_chart object inherits the following struct classes:

```
[tic_chart] » [chart] » [struct_class]
```

Examples

```
M = tic_chart(
    factor_name = "V1",
    run_order = character(0),
    connected = FALSE)

D = iris_DatasetExperiment()
D$sample_meta$run_order=1:nrow(D)
C = tic_chart(factor_name='Species',run_order='run_order')
chart_plot(C,D)
```

tSNE

tSNE

Description

t-Distributed Stochastic Neighbor Embedding.

Usage

```
tSNE(
  dims = 2,
  perplexity = 30,
  max_iter = 100,
  theta = 0.5,
  check_duplicates = FALSE,
  init = NULL,
  eta = 200,
  ...
)
```

Arguments

dims

(numeric) The number of tSNE dimensions computed. The default is 2.

tSNE

perplexity (numeric) Perplexity parameter. The default is 30.

max_iter (numeric) The maximum number of tSNE iterations. The default is 100.

theta (numeric) Speed/accuracy trade-off. A value of 0 gives an exact tSNE. The de-

fault is 0.5.

check_duplicates

(logical) Check for duplicates. Allowed values are limited to the following:

• "TRUE": Checks for the presence of exact duplicate samples.

• "FALSE": Does not check for exact duplicate samples.

The default is FALSE.

init (NULL, data.frame, DatasetExperiment) A set of coordinates for initialising the

tSNE algorithm. NULL uses random initialisation. The default is NULL.

eta (numeric) The learning rate parameter. The default is 200.

... Additional slots and values passed to struct_class.

Details

This object makes use of functionality from the following packages:

• Rtsne

Value

A tSNE object with the following output slots:

Y (DatasetExperiment)

Inheritance

A tSNE object inherits the following struct classes:

```
[tSNE] » [model] » [struct_class]
```

References

Krijthe JH (2015). *Rtsne: T-Distributed Stochastic Neighbor Embedding using Barnes-Hut Implementation*. R package version 0.17, https://github.com/jkrijthe/Rtsne.

van der Maaten L, Hinton G (2008). "Visualizing High-Dimensional Data Using t-SNE." *Journal of Machine Learning Research*, 9, 2579-2605.

van der Maaten L (2014). "Accelerating t-SNE using Tree-Based Algorithms." *Journal of Machine Learning Research*, 15, 3221-3245.

tSNE_scatter 141

Examples

```
M = tSNE(
    dims = 2,
    perplexity = 30,
    max_iter = 1000,
    theta = 0.5,
    check_duplicates = FALSE,
    init = NULL,
    eta = 200)
M = tSNE()
```

 $tSNE_scatter$

Feature boxplot

Description

plots the new representation of data after applying tSNE.

Usage

```
tSNE_scatter(factor_name, ...)
```

Arguments

```
factor_name (character) The name of a sample-meta column to use.
... Additional slots and values passed to struct_class.
```

Details

This object makes use of functionality from the following packages:

• Rtsne

Value

A tSNE_scatter object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A tSNE_scatter object inherits the following struct classes:

```
[tSNE_scatter] » [chart] » [struct_class]
```

142 ttest

References

Krijthe JH (2015). *Rtsne: T-Distributed Stochastic Neighbor Embedding using Barnes-Hut Implementation*. R package version 0.17, https://github.com/jkrijthe/Rtsne.

van der Maaten L, Hinton G (2008). "Visualizing High-Dimensional Data Using t-SNE." *Journal of Machine Learning Research*, 9, 2579-2605.

van der Maaten L (2014). "Accelerating t-SNE using Tree-Based Algorithms." *Journal of Machine Learning Research*, 15, 3221-3245.

Examples

ttest

t-test

Description

A t-test compares the means of two factor levels. Multiple-test corrected p-values are used to indicate the significance of the computed difference for all features.

Usage

```
ttest(
  alpha = 0.05,
  mtc = "fdr",
  factor_names,
  paired = FALSE,
  paired_factor = character(0),
  equal_variance = FALSE,
  conf_level = 0.95,
  ...
)
```

Arguments

alpha

(numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc

(character) Multiple test correction method. Allowed values are limited to the following:

- "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.
- "fdr": Benjamini and Hochberg False Discovery Rate correction.

ttest 143

```
• "none": No correction.
```

The default is "fdr".

factor_names (character) The name of sample meta column(s) to use. paired (logical) Apply a paired t-test. The default is FALSE.

paired_factor (character) The factor name that encodes the sample id for pairing. The default

is character(0).

equal_variance (logical) Equal variance. Allowed values are limited to the following:

- "TRUE": The variance of each group is treated as being equal using the pooled variance to estimate the variance.
- "FALSE": The variance of each group is not assumed to be equal and the Welch (or Satterthwaite) approximation is used.

The default is FALSE.

conf_level (numeric) The confidence level of the interval. The default is 0.95.

... Additional slots and values passed to struct_class.

Value

A ttest object with the following output slots:

t_statistic (data.frame) The value of the calculate statistics which is converted to a p-value when compared to a t-distribution of the probability of observing the calculated t-statistic.

dof (numeric) The number of degrees of freedom used to calculate the test statistic.

significant (data.frame) TRUE if the calculated p-value is less than the supplied threhold (alpha).

(data.frame) Confidence interval for t statistic.

(data.frame) The group means estimated when computing the t-statistic.

Inheritance

estimates

A ttest object inherits the following struct classes:

```
[ttest] » [model] » [struct_class]
```

Examples

```
M = ttest(
    alpha = 0.05,
    mtc = "fdr",
    factor_names = "V1",
    paired = FALSE,
    paired_factor = "NA",
    equal_variance = FALSE,
    conf_level = 0.95)
M = ttest(factor_name='Class')
```

144 vec_norm

vec_norm

Vector normalisation

Description

The samples in the data matrix are normalised to account for differences in concentration by scaling each sample such that the sum of squares is equal to 1.

Usage

```
vec_norm(...)
```

Arguments

Additional slots and values passed to struct_class.

Value

A vec_norm object with the following output slots:

normalised (DatasetExperiment) A DatasetExperiment object containing the normalised data. coeff (data.frame) The normalisation coefficients calculated by PQN.

struct object

Inheritance

A vec_norm object inherits the following struct classes:

```
[vec_norm] » [model] » [struct_class]
```

Examples

```
M = vec_norm()
M = vec_norm()
```

wilcox_p_hist 145

wilcox_p_hist

Histogram of p values

Description

A histogram of p values for the wilcoxon signed rank test

Usage

```
wilcox_p_hist(...)
```

Arguments

... Additional slots and values passed to struct_class.

Value

A wilcox_p_hist object. This object has no output slots. See chart_plot in the struct package to plot this chart object.

Inheritance

A wilcox_p_hist object inherits the following struct classes:

```
[wilcox_p_hist] » [chart] » [struct_class]
```

Examples

```
M = wilcox_p_hist()
M = wilcox_p_hist()
```

wilcox_test

wilcoxon signed rank test

Description

A Mann-Whitney-Wilcoxon signed rank test compares ,the ranks of values in two groups. It is the non-parametric equivalent of a t-test. Multiple test corrected p-values are computed as indicators of significance for each variable/feature.

146 wilcox_test

Usage

```
wilcox_test(
  alpha = 0.05,
  mtc = "fdr",
  factor_names,
  paired = FALSE,
  paired_factor = character(0),
  conf_level = 0.95,
  ...
)
```

Arguments

alpha (numeric) The p-value cutoff for determining significance. The default is 0.05.

mtc (character) Multiple test correction method. Allowed values are limited to the

following:

• "bonferroni": Bonferroni correction in which the p-values are multiplied by the number of comparisons.

• "fdr": Benjamini and Hochberg False Discovery Rate correction.

• "none": No correction.

The default is "fdr".

factor_names (character) The name of a sample-meta column to use.

paired (logical) Apply a paired test. The default is FALSE.

paired_factor (character) The factor name containing sample ids for paired data. The default

is character(0).

conf_level (numeric) The confidence level of the interval. The default is 0.95.

... Additional slots and values passed to struct_class.

Value

A wilcox_test object with the following output slots:

statistic (data.frame) The value of the calculated statistic which is converted to a p-value.

p_value (data.frame) The probability of observing the calculated t-statistic.

dof (numeric) The number of degrees of freedom used to calculate the test statistic. significant (data.frame) TRUE if the calculated p-value is less than the supplied threhold (alpha).

conf_int (data.frame) Confidence interval for t statistic.

estimates (data.frame) The group estimates used when computing the statistic.

struct object

wilcox_test 147

Inheritance

A wilcox_test object inherits the following struct classes:

```
[wilcox_test] » [model] » [struct_class]
```

Examples

```
M = wilcox_test(
    alpha = 0.05,
    mtc = "fdr",
    factor_names = "V1",
    paired = FALSE,
    paired_factor = character(0),
    conf_level = 0.95)
M = wilcox_test(factor_name='Class')
```

Index

```
ANOVA, 5
                                                                                              chart_plot,confounders_lsq_boxplot,confounders_clsq-method
as_data_frame, 7
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
as_data_frame, filter_na_count-method
                (as_data_frame), 7
                                                                                               chart_plot,DatasetExperiment_boxplot,DatasetExperiment-met
as_data_frame, ttest-method
                                                                                                                (chart_plot, dfa_scores_plot, DFA-method),
                (as_data_frame), 7
as_data_frame,wilcox_test-method
                                                                                               chart_plot,DatasetExperiment_dist,DatasetExperiment-method
                (as_data_frame), 7
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
AUC, 7
autoscale, 8
                                                                                               chart_plot,DatasetExperiment_factor_boxplot,DatasetExperim
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
balanced_accuracy, 9
                                                                                               chart_plot,DatasetExperiment_heatmap,DatasetExperiment-met
blank_filter, 10
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
blank_filter_hist, 12
bootstrap, 12
                                                                                               chart_plot,dfa_scores_plot,DFA-method,
                                                                                                                14
calculate (calculate, AUC-method), 13
                                                                                               chart_plot,feature_boxplot,DatasetExperiment-method
calculate, AUC-method, 13
                                                                                                                (chart_plot, dfa_scores_plot, DFA-method),
calculate, balanced_accuracy-method
                (calculate, AUC-method), 13
                                                                                               chart_plot,feature_profile,DatasetExperiment-method
calculate, r_squared-method
                                                                                                                (chart_plot, dfa_scores_plot, DFA-method),
                (calculate, AUC-method), 13
chart_plot, 12, 19, 22, 23, 27-29, 32, 36, 38,
                                                                                               chart_plot,feature_profile,sb_corr-method
                39, 48, 51, 52, 56, 59, 63, 64, 67, 83,
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
                85, 86, 88, 96–98, 100, 101, 107,
                 108, 110, 112–115, 117, 119, 121,
                                                                                               chart_plot, feature_profile_array, DatasetExperiment-method
                 127, 132, 137, 139, 141, 145
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
chart_plot
                (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               chart_plot,fold_change_plot,fold_change-method
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,blank_filter_hist,blank_filter-method
                (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               chart_plot, fs_line, forward_selection_by_rank-method
                                                                                                                (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,compare_dist,DatasetExperiment-method
                (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               chart_plot,glog_opt_plot,glog_transform-method
chart\_plot, confounders\_lsq\_barchart, confounders\_clsq-\textit{fict} tartot \_plot, dfa\_scores\_plot, DFA-method), and the confounders\_clsq-\textit{fict} tartot \_plot, dfa\_scores\_plot, dfa\_scor
                (chart_plot,dfa_scores_plot,DFA-method),
                 14
                                                                                              chart_plot,gs_line,grid_search_1d-method
```

```
(chart_plot, dfa_scores_plot, DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,hca_dendrogram,HCA-method
                                                                                chart_plot,pls_scores_plot,PLSR-method
              (chart_plot,dfa_scores_plot,DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,kfoldxcv_grid,kfold_xval-method
                                                                                chart_plot,pls_vip_plot,PLSR-method
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
              (chart_plot, dfa_scores_plot, DFA-method),
chart_plot,kfoldxcv_metric,kfold_xval-method chart_plot,plsda_feature_importance_plot,PLSDA-method
              (chart_plot,dfa_scores_plot,DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,kw_p_hist,kw_rank_sum-method
                                                                                chart_plot,plsda_predicted_plot,PLSDA-method
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
              (chart_plot, dfa_scores_plot, DFA-method),
chart_plot,mv_boxplot,DatasetExperiment-methodhart_plot,plsda_roc_plot,PLSDA-method
              (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
              14
chart\_plot, \verb|mv_feature_filter_hist|, \verb|mv_feature_fila| te_p \verb|| het|, \verb|pold| sr_cook_dist|, PLSR-method| state that the pold state that the 
              (chart_plot,dfa_scores_plot,DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot, mv_histogram, DatasetExperiment-methodart_plot, plsr_prediction_plot, PLSR-method
              (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,mv_sample_filter_hist,mv_sample_fidtertmelbbdplsr_qq_plot,PLSR-method
              (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
              14
chart_plot,pca_biplot,PCA-method
                                                                                chart_plot,plsr_residual_hist,PLSR-method
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
              (chart_plot,dfa_scores_plot,DFA-method),
                                                                                               14
chart_plot,pca_correlation_plot,PCA-method
                                                                                chart_plot,pqn_norm_hist,pqn_norm-method
              (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,pca_dstat_plot,PCA-method
                                                                                chart_plot,resample_chart,resample-method
              (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,pca_loadings_plot,PCA-method
                                                                                 chart_plot,rsd_filter_hist,rsd_filter-method
              (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
              14
                                                                                               14
chart_plot,pca_scores_plot,PCA-method
                                                                                chart_plot,scatter_chart,DatasetExperiment-method
              (chart_plot, dfa_scores_plot, DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,pca_scree_plot,PCA-method
                                                                                chart_plot,svm_plot_2d,SVM-method
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
              (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,permutation_test_plot,permutation_deanttmelbodtic_chart,DatasetExperiment-method
              (chart_plot,dfa_scores_plot,DFA-method),
                                                                                               (chart_plot,dfa_scores_plot,DFA-method),
chart_plot,pls_regcoeff_plot,PLSR-method
                                                                                chart_plot,tSNE_scatter,tSNE-method
```

<pre>(chart_plot,dfa_scores_plot,DFA-methor)</pre>	ody_p_hist, 67
14	kw_rank_sum, 67
<pre>chart_plot,wilcox_p_hist,wilcox_test-method</pre>	
<pre>(chart_plot,dfa_scores_plot,DFA-methor)</pre>	$_{ m od}$ i, $_{ m near_model}$, $_{ m 69}$
14	log_transform, 70
classical_lsq, 18	
<pre>compare_dist, 19</pre>	mean_centre, 71
confounders_clsq, 20	mean_of_medians, 72
confounders_lsq_barchart, 21	mixed_effect, 73
<pre>confounders_lsq_boxplot, 22</pre>	model_apply
constant_sum_norm, 23	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
corr_coef, 24	74
	<pre>model_apply,ANOVA,DatasetExperiment-method,</pre>
DatasetExperiment_boxplot, 26	74
DatasetExperiment_dist, 27	<pre>model_apply,classical_lsq,DatasetExperiment-method</pre>
DatasetExperiment_factor_boxplot, 28	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
DatasetExperiment_heatmap, 29	74
DFA, 30	<pre>model_apply,confounders_clsq,DatasetExperiment-method</pre>
dfa_scores_plot, 31	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
dratio_filter, 33	74
equal_split, 34	<pre>model_apply,constant_sum_norm,DatasetExperiment-method</pre>
feature_boxplot, 35	model_apply,corr_coef,DatasetExperiment-method
feature_profile, 37	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
feature_profile_array, 38	74
filter_by_name, 40	model_apply,equal_split,DatasetExperiment-method
filter_na_count, 41	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
filter_smeta, 42	74
fisher_exact, 43	model_apply,filter_smeta,DatasetExperiment-method
fold_change, 44	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
fold_change_int, 46	74
fold_change_plot, 48	model_apply,fisher_exact,DatasetExperiment-method
forward_selection_by_rank,49	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
fs_line, 51	74
1	<pre>model_apply,fold_change,DatasetExperiment-method</pre>
glog_opt_plot, 52	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
glog_transform, 53	74
grid_search_1d, 54	<pre>model_apply,fold_change_int,DatasetExperiment-method</pre>
gs_line, 56	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
HCA, 57	74
hca_dendrogram, 58	model_apply,HCA,DatasetExperiment-method
HSD, 59	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
HSDEM, 61	74
HODELI, OI	model_apply,HSD,DatasetExperiment-method
kfold_xval, 64	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>
kfoldxcv_grid, 62	74
kfoldxcv_metric, 63	<pre>model_apply,HSDEM,DatasetExperiment-method</pre>
knn_impute, 65	<pre>(model_apply,ANOVA,DatasetExperiment-method),</pre>

```
model_apply,knn_impute,DatasetExperiment-methmoddel_predict
             (model_apply,ANOVA,DatasetExperiment-method), (model_predict,DFA,DatasetExperiment-method),
model\_apply, kw\_rank\_sum, DatasetExperiment-methodel\_predict, autoscale, DatasetExperiment-methodel\_predict, autoscale, DatasetExperiment-methodel\_predict, autoscale, DatasetExperiment-methodel\_predict, autoscale, DatasetExperiment-methodel\_predict, autoscale, DatasetExperiment-methodel\_predict, autoscale, DatasetExperiment-methodel_predict, autoscale, DatasetExperiment-methodel_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predict_predi
             (model_apply,ANOVA,DatasetExperiment-method), (model_predict,DFA,DatasetExperiment-method),
model\_apply, log\_transform, DatasetExperiment-meddledl\_predict, blank\_filter, DatasetExperiment-method
             (model_apply,ANOVA,DatasetExperiment-method), (model_predict,DFA,DatasetExperiment-method),
             74
model_apply,mean_of_medians,DatasetExperimentmodethopdredict,constant_sum_norm,DatasetExperiment-method
             (model_apply,ANOVA,DatasetExperiment-method), (model_predict,DFA,DatasetExperiment-method),
model_apply,mixed_effect,DatasetExperiment-mentbdel_predict,DFA,DatasetExperiment-method,
             (model_apply,ANOVA,DatasetExperiment-method), 77
                                                                            model_predict,dratio_filter,DatasetExperiment-method
model_apply,nroot_transform,DatasetExperiment-method (model_predict,DFA,DatasetExperiment-method),
             (model_apply,ANOVA,DatasetExperiment-method), 77
             74
                                                                            model_predict,filter_by_name,DatasetExperiment-method
model_apply,pairs_filter,DatasetExperiment-method
                                                                                          (model_predict, DFA, DatasetExperiment-method),
             (model_apply,ANOVA,DatasetExperiment-method), 77
                                                                            model_predict,filter_na_count,DatasetExperiment-method
                                                                                          (model_predict,DFA,DatasetExperiment-method),
model_apply,prop_na,DatasetExperiment-method
             (model_apply,ANOVA,DatasetExperiment-method), 77
                                                                            model_predict,filter_smeta,DatasetExperiment-method
model_apply,rsd_filter,DatasetExperiment-method
                                                                                          (model_predict, DFA, DatasetExperiment-method),
             (model_apply, ANOVA, DatasetExperiment-method), 77
                                                                            model_predict,glog_transform,DatasetExperiment-method
model_apply,sb_corr,DatasetExperiment-method
                                                                                          (model_predict, DFA, DatasetExperiment-method),
             (model_apply, ANOVA, DatasetExperiment-method), 77
                                                                            model_predict,linear_model,DatasetExperiment-method
model_apply,split_data,DatasetExperiment-method
                                                                                          (model_predict,DFA,DatasetExperiment-method),
             (model_apply,ANOVA,DatasetExperiment-method), 77
                                                                            model_predict,mean_centre,DatasetExperiment-method
model_apply,stratified_split,DatasetExperiment-method(model_predict,DFA,DatasetExperiment-method),
             (model_apply,ANOVA,DatasetExperiment-method), 77
                                                                            model_predict,mv_feature_filter,DatasetExperiment-method
model_apply,tSNE,DatasetExperiment-method
                                                                                          (model_predict, DFA, DatasetExperiment-method),
             (model_apply,ANOVA,DatasetExperiment-method), 77
                                                                            model_predict,mv_sample_filter,DatasetExperiment-method
model_apply,ttest,DatasetExperiment-method
                                                                                          (model_predict, DFA, DatasetExperiment-method),
             (model_apply,ANOVA,DatasetExperiment-method), 77
             74
                                                                            model_predict,OPLSDA,DatasetExperiment-method
model_apply,vec_norm,DatasetExperiment-method
                                                                                          (model_predict, DFA, DatasetExperiment-method),
             (model_apply, ANOVA, DatasetExperiment-method), 77
                                                                            model_predict,OPLSR,DatasetExperiment-method
model_apply,wilcox_test,DatasetExperiment-method
                                                                                          (model_predict, DFA, DatasetExperiment-method),
```

(model_apply, ANOVA, DatasetExperiment-method), 77

```
model_predict,pareto_scale,DatasetExperiment-method 79
        (model_predict,DFA,DatasetExperiment-method
train,filter_na_count,DatasetExperiment-method
                                                         (model_train, DFA, DatasetExperiment-method),
model_predict,PCA,DatasetExperiment-method
        (model\_predict, DFA, DatasetExperiment-\textbf{metled} \underline{d} \underline{t} rain, filter\_smeta, DatasetExperiment-method)
                                                         (model_train, DFA, DatasetExperiment-method),
model_predict,PLSDA,DatasetExperiment-method
        (model_predict,DFA,DatasetExperiment-medteddtrain,glog_transform,DatasetExperiment-method
                                                         (model_train, DFA, DatasetExperiment-method),
                                                         79
model_predict,PLSR,DatasetExperiment-method
        (model_predict,DFA,DatasetExperiment-metMeddtrain,linear_model,DatasetExperiment-method
        77
                                                         (model_train, DFA, DatasetExperiment-method),
model_predict,pqn_norm,DatasetExperiment-method
        (model_predict,DFA,DatasetExperiment-method_train,mean_centre,DatasetExperiment-method
                                                         (model_train, DFA, DatasetExperiment-method),
model_predict,SVM,DatasetExperiment-method
                                                         79
        (model\_predict, DFA, DatasetExperiment-\textbf{medledd} \textbf{\textit{t}} rain, \texttt{mv\_feature\_filter}, DatasetExperiment-\textbf{method})
                                                         (model_train, DFA, DatasetExperiment-method),
model_predict,vec_norm,DatasetExperiment-method
                                                         79
        (model_predict,DFA,DatasetExperiment-method)
train,mv_sample_filter,DatasetExperiment-method
                                                         (model_train, DFA, DatasetExperiment-method),
model_reverse
        (model_reverse,autoscale,DatasetExperimodel_nethodDPLSDA,DatasetExperiment-method
                                                         (model_train, DFA, DatasetExperiment-method),
model_reverse, autoscale, DatasetExperiment-method,
        78
                                                model_train,OPLSR,DatasetExperiment-method
model_reverse,mean_centre,DatasetExperiment-method
                                                        (model_train, DFA, DatasetExperiment-method),
        (model_reverse, autoscale, DatasetExperiment-metDod),
        78
                                                model_train,pareto_scale,DatasetExperiment-method
model_train
                                                         (model_train, DFA, DatasetExperiment-method),
        (model_train, DFA, DatasetExperiment-method),
                                                model_train,PCA,DatasetExperiment-method
                                                         (model_train, DFA, DatasetExperiment-method),
model_train,autoscale,DatasetExperiment-method
        (model_train, DFA, DatasetExperiment-method),
                                                model_train,PLSDA,DatasetExperiment-method
\verb|model_train,blank_filter,DatasetExperiment-method|\\
                                                         (model_train, DFA, DatasetExperiment-method),
        (model_train, DFA, DatasetExperiment-method),
        79
                                                model_train,PLSR,DatasetExperiment-method
model_train,constant_sum_norm,DatasetExperiment-metho(model_train,DFA,DatasetExperiment-method),
        (model_train, DFA, DatasetExperiment-method),
                                                model_train,pqn_norm,DatasetExperiment-method
model_train,DFA,DatasetExperiment-method,
                                                         (model_train, DFA, DatasetExperiment-method),
        79
                                                         79
model_train,dratio_filter,DatasetExperiment-medded_train,SVM,DatasetExperiment-method
        (model_train, DFA, DatasetExperiment-method),
                                                         (model_train, DFA, DatasetExperiment-method),
model_train,filter_by_name,DatasetExperiment-medtabdtrain,vec_norm,DatasetExperiment-method
        (model_train, DFA, DatasetExperiment-method),
                                                        (model_train, DFA, DatasetExperiment-method),
```

79	rsd_filter_hist, 126
MTBLS79_DatasetExperiment, 81	run
mv_boxplot, 82	<pre>(run,bootstrap,DatasetExperiment,metric-method),</pre>
mv_feature_filter, 83	127
<pre>mv_feature_filter_hist, 85</pre>	<pre>run,bootstrap,DatasetExperiment,metric-method,</pre>
mv_histogram, 85	127
mv_sample_filter, 86	<pre>run,forward_selection_by_rank,DatasetExperiment,metric-met</pre>
<pre>mv_sample_filter_hist, 88</pre>	<pre>(run,bootstrap,DatasetExperiment,metric-method), 127</pre>
nroot_transform, 88	<pre>run,grid_search_1d,DatasetExperiment,metric-method</pre>
ontology_cache, 89	127
OPLSDA, 90	run,kfold_xval,DatasetExperiment,metric-method
OPLSR, 91	<pre>(run,bootstrap,DatasetExperiment,metric-method), 127</pre>
pairs_filter,92	run,permutation_test,DatasetExperiment,metric-method
pareto_scale, 93	<pre>(run,bootstrap,DatasetExperiment,metric-method),</pre>
PCA, 94	127
pca_biplot, 95	<pre>run,permute_sample_order,DatasetExperiment,metric-method</pre>
pca_correlation_plot,96	(run,bootstrap,DatasetExperiment,metric-method),
pca_dstat_plot, 97	127
pca_loadings_plot, 98	<pre>run,resample,DatasetExperiment,metric-method</pre>
pca_scores_plot, 99	<pre>(run,bootstrap,DatasetExperiment,metric-method),</pre>
pca_scree_plot, 101	127
permutation_test, 102	
permutation_test_plot, 103	sb_corr, 129
permute_sample_order, 103	scatter_chart, 131
pls_regcoeff_plot, 114	split_data, 133
pls_scores_plot, 116	stratified_split, 134
pls_scores_plot, (pls_scores_plot), 116	structToolbox, 135
pls_vip_plot, 118	SVM, 135
PLSDA, 104	svm_plot_2d, 137
plsda_feature_importance_plot, 106	43 - January 120
plsda_predicted_plot, 108	tic_chart, 138
plsda_roc_plot, 109	tSNE, 139
plsda_scores_plot (pls_scores_plot), 116	tSNE_scatter, 141
PLSR, 110	ttest, 142
plsr_cook_dist, 111	vec_norm, 144
plsr_prediction_plot, 112	766_1101 III, 111
plsr_qq_plot, 113	wilcox_p_hist, 145
plsr_residual_hist, 114	wilcox_test, 145
pqn_norm, 119	
pqn_norm_hist, 121	
prop_na, 122	
r_squared, 128	
resample, 123	
resample_chart, 125	

rsd_filter, 125