
Design Microarray Probes

Erik S. Wright

May 1, 2024

Contents
1 Introduction 1

2 Getting Started 1
2.1 Startup . 1
2.2 Creating a Consensus Sequence Set . 2
2.3 Defining Groups . 2

3 Array Design and Validation Steps 2
3.1 Designing the Probe Set . 2
3.2 Validating the Probe Set . 3
3.3 Further Improving the Result . 4
3.4 Extending the Simulation . 7

4 Session Information 9

1 Introduction
This document describes how to design and validate sequence-specific probes for synthesis onto a DNA microarray. As
a case study, this tutorial focuses on the development of a microarray to identify taxonomic groups based on previously
obtained 16S ribosomal RNA sequences. The same approach could be applied to differentiate sequences representing
any number of groups based on any shared region of DNA. The objective of microarray probe design is straightforward:
to determine a set of probes that will bind to one group of sequences (the target consensus sequence) but no others (the
non-targets). Beginning with a set of aligned DNA sequences, the program chooses the best set of probes for targeting
each consensus sequence. More importantly, the design algorithm is able to predict when potential cross-hybridization
of the probes may occur to non-target sequence(s). An integrated design approach enables characterizing the probe set
before fabrication, and then assists with analysis of the experimental results.

2 Getting Started

2.1 Startup
To get started we need to load the DECIPHER package, which automatically loads several other required packages.

> library(DECIPHER)

Help for the DesignArray function can be accessed through:

> ? DesignArray

1

If DECIPHER is installed on your system, the code in each example can be obtained via:

> browseVignettes("DECIPHER")

2.2 Creating a Consensus Sequence Set
We begin with a set of aligned sequences belonging to the 16S rRNA of several samples obtained from drinking water
distribution systems. Be sure to change the path names to those on your system by replacing all of the text inside
quotes labeled “<<path to ...>>” with the actual path on your system.

> # specify the path to your sequence file:
> fas <- "<<path to FASTA file>>"
> # OR find the example sequence file used in this tutorial:
> fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")

Next, we will import the sequences into memory:

> dna <- readDNAStringSet(fas)

2.3 Defining Groups
At this point we need to define groups of related sequences among the sequences. In this case we wish to cluster the
sequences into groups of at most 3% distance between sequences.

> dMatrix <- DistanceMatrix(dna, verbose=FALSE)
> clusters <- TreeLine(myDistMatrix=dMatrix, type="clusters", cutoff=0.03, method="complete", verbose=FALSE)

Now that we have identified 100 operational taxonomic units (OTUs), we must form a set of consensus sequences that
represent each OTU.

> conSeqs <- tapply(dna, clusters$cluster, ConsensusSequence)
> conSeqs <- unlist(DNAStringSetList(conSeqs))

3 Array Design and Validation Steps

3.1 Designing the Probe Set
Next we will design the optimal set of 20 probes for targeting each OTU. Since there are 100 OTUs, this process will
result in a set of 2,000 probes. By default, probes are designed to have the optimal length for hybridization at 46◦C and
10% (vol/vol) formamide. We wish to allow up to 2 permutations for each probe, which will potentially require more
space on the microarray. Since not all of the sequences span the alignment, we will design probes between alignment
positions 120 and 1,450, which is the region encompassed by most of the sequences.

> probes <- DesignArray(conSeqs, maxPermutations=2, numProbes=20,
start=120, end=1450, verbose=FALSE)

> dim(probes)

[1] 2000 12

> names(probes)

2

[1] "name" "start" "length" "start_aligned"
[5] "end_aligned" "permutations" "score" "formamide"
[9] "hyb_eff" "target_site" "probes" "mismatches"

We can see the probe sequence, target site positioning, melt point (formamide), and predicted cross-hybridization
efficiency to non-targets (mismatches). The first probe targeting the first consensus sequence (OTU #1) is predicted to
have 84% hybridization efficiency at the formamide concentration used in the experiment (10%). This probe is also
predicted to cross-hybridize with OTU #5 with 59% hybridization efficiency.

> probes[1,]

name start length start_aligned end_aligned permutations score
1 1 1 22 120 143 1 22.75502....

formamide hyb_eff target_site
1 16.06832.... 84.26072.... GCATCGGAACGTGTCCTAAAGT

probes mismatches
1 ACTTTAGGACACGTTCCGATGCTTTTTTTTTTTTTTTTTTTT 5 (59.4%)

If we wished to have the probe set synthesized onto a microarray, all we would need is the unique set of probes. Note
that the predictive model was calibrated using NimbleGen microarrays. Although predictions are likely similar for
other microarray platforms, hybridization conditions should always be experimentally optimized.

> u <- unique(unlist(strsplit(probes$probes, ",", fixed=TRUE)))
> length(u)

[1] 1899

> head(u)

[1] "ACTTTAGGACACGTTCCGATGCTTTTTTTTTTTTTTTTTTTT"
[2] "GTATTAGCGCATCTTTCGATGCTTTTTTTTTTTTTTTTTTTT"
[3] "GTCTTTCGATCCCCTACTTTCCTCTTTTTTTTTTTTTTTTTTTT"
[4] "GGCCGCTCCAAAAGCATAAGGTTTTTTTTTTTTTTTTTTTTT"
[5] "ATGGCAATTAATGACAAGGGTTGCTTTTTTTTTTTTTTTTTTTT"
[6] "CAGTGTGGTTGGCCATCCTCTTTTTTTTTTTTTTTTTTTTT"

3.2 Validating the Probe Set
Before fabrication onto a DNA microarray it may be useful to predict whether the probe set will adequately discrim-
inate between the OTUs. This can be accomplished by simulating the hybridization process multiple times while
incorporating error. We begin by converting the predicted cross-hybridization efficiencies into a sparse matrix that
mathematically represents the microarray (A). Here the rows of the matrix represent each probe, and the columns of
the matrix represent each OTU. The entries of the matrix therefore give the hybridization efficiency of probe i with
OTU j. We can neglect all hybridization efficiencies less than 5% because these will likely not hybridize or have
insufficient brightness.

> A <- Array2Matrix(probes, verbose=FALSE)
> w <- which(A$x < 0.05)
> if (length(w) > 0) {

A$i <- A$i[-w]
A$j <- A$j[-w]
A$x <- A$x[-w]

}

3

We then multiply the matrix A by the amount (x) of each OTU present to determine the corresponding brightness
(b) values of each probe. We can add a heteroskedastic error to the brightness values to result in a more accurate
simulation (b = Ax + error). Furthermore, we can introduce a 5% rate of probes that hybridize randomly.

> # simulate the case where 10% of the OTUs are present in random amounts
> present <- sample(length(conSeqs), floor(0.1*length(conSeqs)))
> x <- numeric(length(conSeqs))
> x[present] <- abs(rnorm(length(present), sd=2))
> # determine the predicted probe brightnesses based on the present OTUS
> background <- 0.2
> b <- matrix(tapply(A$x[A$j]*x[A$j], A$i, sum), ncol=1) + background
> b <- b + rnorm(length(b), sd=0.2*b) # add 20% error
> b <- b - background # background subtracted brightnesses
> # add in a 5% false hybridization rate
> bad_hybs <- sample(length(b), floor(0.05*length(b)))
> b[bad_hybs] <- abs(rnorm(length(bad_hybs), sd=max(b)/3))

Finally, we can solve for the amount of each OTU present on the microarray by solving Ax = b for x using non-negative
(x ≥ 0) least squares. Plotting the expected amount versus the predicted amount shows that this probe set may result
in a small number of false positives and false negatives (Fig. 1). False negatives are the expected observations below
the dashed threshold line, which represents the minimum amount required to be considered present. If this threshold
is lowered then false negatives will appear where no amount was expected.

> # solve for the predicted amount of each OTU present on the array
> x_out <- NNLS(A, b, verbose=FALSE)

3.3 Further Improving the Result
Least squares regression is particularly sensitive outlier observations and heteroskedastic noise. For this reason we
will decrease the effects of outlier observations by using weighted regression. With each iteration the weights will be
refined using the residuals from the prior solution to Ax = b.

> # initialize weights to one:
> weights <- matrix(1, nrow=nrow(b), ncol=ncol(b))
> # iteratively unweight observations with high residuals:
> for (i in 1:10) { # 10 iterations

weights <- weights*exp(-0.1*abs(x_out$residuals))
A_weighted <- A
A_weighted$x <- A$x*weights[A$i]
b_weighted <- b*weights
x_out <- NNLS(A_weighted, b_weighted, verbose=FALSE)

}

Weighted regression lowered the threshold for detection so that more OTUs would be detectable (Fig. 2). However,
false negatives still remain based on this simulation when a very small amount is expected. If the threshold is lowered
to capture all of the expected OTUs then we can determine the false positive(s) that would result. These false positive
sequences are substantially different from the nearest sequence that is present.

> w <- which(x_out$x >= min(x_out$x[present]))
> w <- w[-match(present, w)] # false positives
> dMatrix <- DistanceMatrix(conSeqs, verbose=FALSE)
> # print distances of false positives to the nearest present OTU

4

0 1 2 3 4

0
1

2
3

4

Expected Amount

P
re

di
ct

ed
 A

m
ou

nt

Figure 1: Characterization of predicted specificity for the designed probe set.

5

0 1 2 3 4

0
1

2
3

4

Expected Amount

P
re

di
ct

ed
 A

m
ou

nt

Figure 2: Improved specificity obtained by down-weighting the outliers.

6

> for (i in w)
print(min(dMatrix[i, present]))

[1] 0.0452381
[1] 0.1211884
[1] 0.04038005
[1] 0.05154639
[1] 0.03602193
[1] 0.05784469
[1] 0.1359375
[1] 0.180303
[1] 0.1055901
[1] 0.194697
[1] 0.03271375
[1] 0.1284541
[1] 0.1319181
[1] 0.1168048
[1] 0.1160991
[1] 0.03879652
[1] 0.02375297
[1] 0.1180666
[1] 0.1377152
[1] 0.08146965
[1] 0.05390185
[1] 0.134375
[1] 0.06334125
[1] 0.06175772
[1] 0.08426547
[1] 0.167289
[1] 0.1033153
[1] 0.1144201
[1] 0.1892506
[1] 0.1116173
[1] 0.1425322
[1] 0.1262136
[1] 0.1099684
[1] 0.1455793
[1] 0.1466877

3.4 Extending the Simulation
The above simulation can be repeated multiple times and with different initial conditions to better approximate the
expected number of false positives and false negatives (Fig. 3). In the same manner the design parameters can be
iteratively optimized to further improve the predicted specificity of the probe set based on the simulation results. After
fabrication, validation experiments using known samples should be used in replace of the simulated brightness values.

> # simulate multiple cases where 10% of the OTUs are present in random amounts
> iterations <- 100
> b <- matrix(0, nrow=dim(b)[1], ncol=iterations)
> x <- matrix(0, nrow=length(conSeqs), ncol=iterations)
> for (i in 1:iterations) {

present <- sample(length(conSeqs), floor(0.1*length(conSeqs)))

7

x[present, i] <- abs(rnorm(length(present), sd=2))

determine the predicted probe brightnesses based on the present OTUS
b[, i] <- tapply(A$x[A$j]*x[A$j, i], A$i, sum) + background
b[, i] <- b[, i] + rnorm(dim(b)[1], sd=0.2*b[, i]) # add 20% error
b[, i] <- b[, i] - background # background subtracted brightnesses

add in a 5% false hybridization rate
bad_hybs <- sample(dim(b)[1], floor(0.05*length(b[, i])))
b[bad_hybs, i] <- abs(rnorm(length(bad_hybs), sd=max(b[, i])/3))

}
> x_out <- NNLS(A, b, verbose=FALSE)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

Expected Amount

P
re

di
ct

ed
 A

m
ou

nt

Figure 3: The combined results of multiple simulations.

8

4 Session Information
All of the output in this vignette was produced under the following conditions:

• R version 4.4.0 RC (2024-04-16 r86468), x86_64-pc-linux-gnu

• Running under: Ubuntu 22.04.4 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

• Other packages: BiocGenerics 0.51.0, Biostrings 2.73.0, DECIPHER 3.1.0, GenomeInfoDb 1.41.0,
IRanges 2.39.0, S4Vectors 0.43.0, XVector 0.45.0

• Loaded via a namespace (and not attached): DBI 1.2.2, GenomeInfoDbData 1.2.12, KernSmooth 2.23-22,
R6 2.5.1, UCSC.utils 1.1.0, compiler 4.4.0, crayon 1.5.2, httr 1.4.7, jsonlite 1.8.8, tools 4.4.0, zlibbioc 1.51.0

9

	Introduction
	Getting Started
	Startup
	Creating a Consensus Sequence Set
	Defining Groups

	Array Design and Validation Steps
	Designing the Probe Set
	Validating the Probe Set
	Further Improving the Result
	Extending the Simulation

	Session Information

