Package: MSstats
Author: Anshuman Raina & Devon Kohler
Date: 5th Semptember 2024
MSstats
, an R package in Bioconductor, supports protein differential analysis
for statistical relative quantification of proteins and peptides in global,
targeted and data-independent proteomics. It handles shotgun, label-free and
label-based (universal synthetic peptide-based) SRM (selected reaction
monitoring), and DIA (data independent acquisition) experiments. It can be used
for experiments with complex designs (e.g. comparing more than two experimental
conditions, or a repeated measure design, such as a time course).
This vignette summarizes the introduction and various options of all
functionalities in MSstats
. More details are available in User Manual
.
For more information about the MSstats workflow, including a detailed description of the available processing options and their impact on the resulting differential analysis, please see the following publication:
Kohler et al, Nature Protocols 19, 2915–2938 (2024).
To install this package, start R (version “4.0”) and enter:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("MSstats")
library(MSstats)
library(ggplot2)
To begin with, we will load sample datasets, including both annotated and plain data. The dataset you need can be found here.
We will also load the Annotation Dataset using MSstatsConvert. You can access this dataset here.
library(MSstats)
# Load data
pd_raw = system.file("tinytest/raw_data/PD/pd_input.csv",
package = "MSstatsConvert")
annotation_raw = system.file("tinytest/raw_data/PD/annot_pd.csv",
package = "MSstatsConvert")
pd = data.table::fread(pd_raw)
annotation = data.table::fread(annotation_raw)
head(pd, 5)
## Confidence.Level Search.ID Processing.Node.No Sequence Unique.Sequence.ID PSM.Ambiguity
## <char> <char> <int> <char> <int> <char>
## 1: High A 4 SLIASTLYR 1327 Unambiguous
## 2: High A 4 AYLATQGVEIR 2889 Unambiguous
## 3: High A 4 NHEIIGDIVPLAK 4700 Unambiguous
## 4: High A 4 NHEIIGDIVPLAK 4700 Unambiguous
## 5: High A 4 YHVNQYTGDESR 5209 Unambiguous
## Protein.Descriptions
## <char>
## 1: Uridine kinase OS=Escherichia coli (strain K12) GN=udk PE=3 SV=1 - [URK_ECOLI]
## 2: Imidazole glycerol phosphate synthase subunit HisF OS=Escherichia coli (strain K12) GN=hisF PE=1 SV=1 - [HIS6_ECOLI]
## 3: Imidazole glycerol phosphate synthase subunit HisF OS=Escherichia coli (strain K12) GN=hisF PE=1 SV=1 - [HIS6_ECOLI]
## 4: Imidazole glycerol phosphate synthase subunit HisF OS=Escherichia coli (strain K12) GN=hisF PE=1 SV=1 - [HIS6_ECOLI]
## 5: Imidazole glycerol phosphate synthase subunit HisF OS=Escherichia coli (strain K12) GN=hisF PE=1 SV=1 - [HIS6_ECOLI]
## X..Proteins X..Protein.Groups Protein.Group.Accessions Modifications Activation.Type DeltaScore DeltaCn
## <int> <int> <char> <char> <char> <int> <int>
## 1: 1 1 P0A8F4 CID 1 0
## 2: 1 1 P60664 CID 1 0
## 3: 1 1 P60664 CID 1 0
## 4: 1 1 P60664 CID 1 0
## 5: 1 1 P60664 CID 1 0
## Rank Search.Engine.Rank Precursor.Area QuanResultID Decoy.Peptides.Matched Exp.Value Homology.Threshold
## <int> <int> <num> <lgcl> <int> <num> <int>
## 1: 1 1 3.26e+07 NA NA 2.7e-01 13
## 2: 1 1 2.71e+08 NA NA 8.4e-05 13
## 3: 1 1 1.40e+08 NA NA 6.6e-03 13
## 4: 1 1 2.13e+08 NA NA 4.5e-04 13
## 5: 1 1 5.43e+06 NA NA 3.8e-02 13
## Identity.High Identity.Middle IonScore Peptides.Matched X..Missed.Cleavages Isolation.Interference....
## <int> <int> <int> <int> <int> <int>
## 1: 13 13 19 6 0 53
## 2: 13 13 54 9 0 25
## 3: 13 13 35 10 0 64
## 4: 13 13 46 10 0 50
## 5: 13 13 27 3 0 29
## Ion.Inject.Time..ms. Intensity Charge m.z..Da. MH...Da. Delta.Mass..Da. Delta.Mass..PPM. RT..min.
## <int> <num> <int> <num> <num> <int> <num> <num>
## 1: 3 1590000 2 512.2952 1023.583 0 -0.17 48.61
## 2: 0 17200000 2 610.8357 1220.664 0 0.67 45.31
## 3: 1 3100000 3 473.6051 1418.801 0 0.35 58.58
## 4: 3 2020000 2 709.9044 1418.802 0 0.92 58.53
## 5: 12 579000 2 734.8257 1468.644 0 -0.74 23.52
## First.Scan Last.Scan MS.Order Ions.Matched Matched.Ions Total.Ions
## <int> <int> <char> <char> <int> <int>
## 1: 14971 14971 MS2 Jun-74 6 74
## 2: 13599 13599 MS2 Sep-98 9 98
## 3: 19004 19004 MS2 8/128 8 128
## 4: 18981 18981 MS2 14/128 14 128
## 5: 4707 4707 MS2 8/112 8 112
## Spectrum.File Annotation
## <char> <lgcl>
## 1: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA
## 2: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA
## 3: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA
## 4: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA
## 5: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw NA
head(annotation, 5)
## Run Condition BioReplicate
## <char> <char> <int>
## 1: 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw Condition1 1
## 2: 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2.raw Condition1 1
## 3: 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3.raw Condition1 1
## 4: 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1.raw Condition2 2
## 5: 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2.raw Condition2 2
The imported data from Step 1.1. now must be converted through MSstatsConvert
package’s PDtoMSstatsFormat
converter.
This function converts the Proteome Discoverer output into the required input
format for MSstats
.
Actual data modification can be seen below:
library(MSstatsConvert)
pd_imported = MSstatsConvert::PDtoMSstatsFormat(pd, annotation,
use_log_file = FALSE)
## INFO [2025-01-09 18:11:46] ** Raw data from ProteomeDiscoverer imported successfully.
## INFO [2025-01-09 18:11:46] ** Raw data from ProteomeDiscoverer cleaned successfully.
## INFO [2025-01-09 18:11:46] ** Using provided annotation.
## INFO [2025-01-09 18:11:46] ** Run labels were standardized to remove symbols such as '.' or '%'.
## INFO [2025-01-09 18:11:46] ** The following options are used:
## - Features will be defined by the columns: PeptideSequence, PrecursorCharge
## - Shared peptides will be removed.
## - Proteins with single feature will not be removed.
## - Features with less than 3 measurements across runs will be removed.
## INFO [2025-01-09 18:11:46] ** Features with all missing measurements across runs are removed.
## INFO [2025-01-09 18:11:46] ** Shared peptides are removed.
## INFO [2025-01-09 18:11:46] ** Multiple measurements in a feature and a run are summarized by summaryforMultipleRows: max
## INFO [2025-01-09 18:11:46] ** Features with one or two measurements across runs are removed.
## INFO [2025-01-09 18:11:46] ** Run annotation merged with quantification data.
## INFO [2025-01-09 18:11:46] ** Features with one or two measurements across runs are removed.
## INFO [2025-01-09 18:11:46] ** Fractionation handled.
## INFO [2025-01-09 18:11:46] ** Updated quantification data to make balanced design. Missing values are marked by NA
## INFO [2025-01-09 18:11:46] ** Finished preprocessing. The dataset is ready to be processed by the dataProcess function.
head(pd_imported)
## ProteinName PeptideModifiedSequence PrecursorCharge FragmentIon ProductCharge IsotopeLabelType Condition
## 1 P0ABU9 ANSHAPEAVVEGASR 2 NA NA L Condition1
## 2 P0ABU9 ANSHAPEAVVEGASR 2 NA NA L Condition1
## 3 P0ABU9 ANSHAPEAVVEGASR 2 NA NA L Condition1
## 4 P0ABU9 ANSHAPEAVVEGASR 2 NA NA L Condition2
## 5 P0ABU9 ANSHAPEAVVEGASR 2 NA NA L Condition2
## 6 P0ABU9 ANSHAPEAVVEGASR 2 NA NA L Condition2
## BioReplicate Run Fraction Intensity
## 1 1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1raw 1 21400000
## 2 1 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2raw 1 17500000
## 3 1 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3raw 1 NA
## 4 2 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1raw 1 11600000
## 5 2 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2raw 1 12000000
## 6 2 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3raw 1 16200000
We have the following converters, which allow you to convert various types of
output reports which include the feature level data to the required input format
of MSstats
. Further information about the converters can be found in the
MSstatsConvert
package.
DIANNtoMSstatsFormat
DIAUmpiretoMSstatsFormat
FragPipetoMSstatsFormat
MaxQtoMSstatsFormat
OpenMStoMSstatsFormat
OpenSWATHtoMSstatsFormat
PDtoMSstatsFormat
ProgenesistoMSstatsFormat
SkylinetoMSstatsFormat
SpectronauttoMSstatsFormat
MetamorpheusToMSstatsFormat
We show an example of how to use the above said Converters. For more information about using the individual converters please see the coresponding documentation.
skyline_raw = system.file("tinytest/raw_data/Skyline/skyline_input.csv",
package = "MSstatsConvert")
skyline = data.table::fread(skyline_raw)
head(skyline, 5)
## X Protein.Name Peptide.Modified.Sequence Precursor.Charge Fragment.Ion Product.Charge
## <int> <char> <char> <int> <char> <int>
## 1: 28081 P23827 LPIVVYTPDNVDVK 2 precursor 2
## 2: 28082 P23827 LPIVVYTPDNVDVK 2 precursor 2
## 3: 28083 P23827 LPIVVYTPDNVDVK 2 precursor 2
## 4: 28084 P23827 LPIVVYTPDNVDVK 2 precursor 2
## 5: 28085 P23827 LPIVVYTPDNVDVK 2 precursor 2
## Isotope.Label.Type Condition BioReplicate File.Name Area
## <char> <char> <int> <char> <num>
## 1: light Mix1 1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw 173812688
## 2: light Mix1 2 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2.raw 193830304
## 3: light Mix1 3 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3.raw 185620528
## 4: light Mix2 4 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1.raw 154545824
## 5: light Mix2 5 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2.raw 169726768
## Standard.Type Truncated
## <lgcl> <lgcl>
## 1: NA FALSE
## 2: NA FALSE
## 3: NA FALSE
## 4: NA FALSE
## 5: NA FALSE
msstats_format = MSstatsConvert::SkylinetoMSstatsFormat(skyline_raw,
qvalue_cutoff = 0.01,
useUniquePeptide = TRUE,
removeFewMeasurements = TRUE,
removeOxidationMpeptides = TRUE,
removeProtein_with1Feature = TRUE)
head(msstats_format)
## ProteinName PeptideSequence PrecursorCharge FragmentIon ProductCharge IsotopeLabelType Condition
## 1 P00370 AANAGGVATSGLEMAQNAAR 3 NA NA light Mix1
## 2 P00370 AANAGGVATSGLEMAQNAAR 3 NA NA light Mix1
## 3 P00370 AANAGGVATSGLEMAQNAAR 3 NA NA light Mix1
## 4 P00370 AANAGGVATSGLEMAQNAAR 3 NA NA light Mix2
## 5 P00370 AANAGGVATSGLEMAQNAAR 3 NA NA light Mix2
## 6 P00370 AANAGGVATSGLEMAQNAAR 3 NA NA light Mix2
## BioReplicate Run Fraction Intensity
## 1 1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1raw 1 5311459776
## 2 2 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2raw 1 4900185344
## 3 3 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3raw 1 5323685504
## 4 4 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1raw 1 5327922240
## 5 5 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2raw 1 5824830336
## 6 6 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3raw 1 5674675584
Once we import the dataset correctly with Converter, we need to pre-process the
data which is done by the dataProcess
function. This step involves data
processing and quality control of the measured feature intensities.
This function includes 5 main processing steps (with other additional small steps):
Log transformation - Transform the feature intensities from their original scale to the log scale. This step helps make the data closer to being normally distributed, requiring less replicates for the central limit theorem to kick in.
Normalization - There are three different normalization options supported. ‘equalizeMedians’ (default) represents constant normalization (equalizing the medians) based on reference signals is performed. ‘quantile’ represents quantile normalization based on reference signals is performed. ‘globalStandards’ represents normalization with global standards proteins. FALSE represents no normalization is performed.
Feature selection - This also has three options i.e. Select All features, Top-N features (by mean intensity) or “Best” features.
Missing value imputation - We impute plausible values in case of missing data points. The RunLevelData can be queried to show Number of imputed intensities (censored intensities) in a RUN and Protein.
Summarization - After data processing the individual features are summarized up to the protein-level using Tukey’s Median Polish. Linear summarization is also available as an option.
summarized = dataProcess(
pd_imported,
logTrans = 2,
normalization = "equalizeMedians",
featureSubset = "all",
n_top_feature = 3,
summaryMethod = "TMP",
equalFeatureVar = TRUE,
censoredInt = "NA",
MBimpute = TRUE
)
## INFO [2025-01-09 18:11:46] ** Log2 intensities under cutoff = 23.053 were considered as censored missing values.
## INFO [2025-01-09 18:11:46] ** Log2 intensities = NA were considered as censored missing values.
## INFO [2025-01-09 18:11:46] ** Use all features that the dataset originally has.
## INFO [2025-01-09 18:11:46]
## # proteins: 5
## # peptides per protein: 1-16
## # features per peptide: 1-1
## INFO [2025-01-09 18:11:46] Some proteins have only one feature:
## P00363,
## P0A8J2 ...
## INFO [2025-01-09 18:11:46]
## Condition1 Condition2 Condition3 Condition4 Condition5
## # runs 3 3 3 3 3
## # bioreplicates 1 1 1 1 1
## # tech. replicates 3 3 3 3 3
## INFO [2025-01-09 18:11:46] Some features are completely missing in at least one condition:
## LDEGcTERC5(Carbamidomethyl)_2_NA_NA,
## ELREQVGDEHIGVIPEDcYYKC18(Carbamidomethyl)_3_NA_NA,
## TNYDHPSAMDHSLLLEHLQALK_3_NA_NA,
## LARPGSDVALDDQLYQEPQAAPVAVPMGK_3_NA_NA,
## AYLATQGVEIR_2_NA_NA ...
## INFO [2025-01-09 18:11:46] == Start the summarization per subplot...
##
|
| | 0%
|
|==================== | 20%
|
|======================================== | 40%
|
|============================================================ | 60%
|
|================================================================================ | 80%
|
|====================================================================================================| 100%
## INFO [2025-01-09 18:11:47] == Summarization is done.
head(summarized$FeatureLevelData)
## PROTEIN PEPTIDE TRANSITION FEATURE LABEL GROUP RUN SUBJECT FRACTION
## 1 P0ABU9 ANSHAPEAVVEGASR_2 NA_NA ANSHAPEAVVEGASR_2_NA_NA L Condition1 1 1 1
## 2 P0ABU9 ANSHAPEAVVEGASR_2 NA_NA ANSHAPEAVVEGASR_2_NA_NA L Condition1 2 1 1
## 3 P0ABU9 ANSHAPEAVVEGASR_2 NA_NA ANSHAPEAVVEGASR_2_NA_NA L Condition1 3 1 1
## 4 P0ABU9 ANSHAPEAVVEGASR_2 NA_NA ANSHAPEAVVEGASR_2_NA_NA L Condition2 4 2 1
## 5 P0ABU9 ANSHAPEAVVEGASR_2 NA_NA ANSHAPEAVVEGASR_2_NA_NA L Condition2 5 2 1
## 6 P0ABU9 ANSHAPEAVVEGASR_2 NA_NA ANSHAPEAVVEGASR_2_NA_NA L Condition2 6 2 1
## originalRUN censored INTENSITY ABUNDANCE newABUNDANCE predicted
## 1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1raw FALSE 21400000 23.71945 23.71945 NA
## 2 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2raw FALSE 17500000 24.06085 24.06085 NA
## 3 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3raw TRUE NA NA 22.77604 22.77604
## 4 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1raw FALSE 11600000 23.77304 23.77304 NA
## 5 121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2raw TRUE 12000000 23.00805 22.95207 22.95207
## 6 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3raw FALSE 16200000 23.74312 23.74312 NA
head(summarized$ProteinLevelData)
## RUN Protein LogIntensities originalRUN GROUP SUBJECT
## 1 1 P0A8F4 22.96185 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1raw Condition1 1
## 2 2 P0A8F4 23.27048 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2raw Condition1 1
## 3 3 P0A8F4 23.44357 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3raw Condition1 1
## 4 4 P0A8F4 23.31217 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1raw Condition2 2
## 5 6 P0A8F4 23.87516 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3raw Condition2 2
## 6 8 P0A8F4 24.31958 121219_S_CCES_01_08_LysC_Try_1to10_Mixt_3_2raw Condition3 3
## TotalGroupMeasurements NumMeasuredFeature MissingPercentage more50missing NumImputedFeature
## 1 9 1 0.6666667 TRUE 2
## 2 9 1 0.6666667 TRUE 2
## 3 9 1 0.6666667 TRUE 2
## 4 9 1 0.6666667 TRUE 2
## 5 9 1 0.6666667 TRUE 2
## 6 9 2 0.3333333 FALSE 1
head(summarized$SummaryMethod)
## [1] "TMP"
After processing the input data, MSstats
provides multiple plots to analyze the
results. Here we show the various types of plots we can use. By default, a
pdf file will be downloaded with corresponding feature level data and the Plot
generated. Alternatively, the address
parameter can be set to FALSE
which
will output the plots directly.
# Profile plot
dataProcessPlots(data=summarized, type="ProfilePlot",
address = FALSE, which.Protein = "P0ABU9")
# Quality control plot
dataProcessPlots(data=summarized, type="QCPlot",
address = FALSE, which.Protein = "P0ABU9")
# Quantification plot for conditions
dataProcessPlots(data=summarized, type="ConditionPlot",
address = FALSE, which.Protein = "P0ABU9")
In this step we test for differential changes in protein abundance across conditions using a linear mixed-effects model. The model will be automatically adjusted based on your experimental design.
A contrast matrix must be provided to the model. Alternatively, all pairwise
comparisons can be made by passing pairwise
to the function. For more
information on creating contrast matrices, please see the citation linked
at the beginning of this document.
model = groupComparison("pairwise", summarized)
## INFO [2025-01-09 18:11:49] == Start to test and get inference in whole plot ...
##
|
| | 0%
|
|========================= | 25%
|
|================================================== | 50%
|
|=========================================================================== | 75%
|
|====================================================================================================| 100%
## INFO [2025-01-09 18:11:49] == Comparisons for all proteins are done.
Model Details
head(model$ModelQC)
## RUN Protein ABUNDANCE originalRUN GROUP SUBJECT
## 1 1 P0A8F4 22.96185 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1raw Condition1 1
## 2 2 P0A8F4 23.27048 121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2raw Condition1 1
## 3 3 P0A8F4 23.44357 121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3raw Condition1 1
## 4 4 P0A8F4 23.31217 121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1raw Condition2 2
## 5 6 P0A8F4 23.87516 121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3raw Condition2 2
## 6 8 P0A8F4 24.31958 121219_S_CCES_01_08_LysC_Try_1to10_Mixt_3_2raw Condition3 3
## TotalGroupMeasurements NumMeasuredFeature MissingPercentage more50missing NumImputedFeature residuals
## 1 9 1 0.6666667 TRUE 2 -0.26344817
## 2 9 1 0.6666667 TRUE 2 0.04517815
## 3 9 1 0.6666667 TRUE 2 0.21827003
## 4 9 1 0.6666667 TRUE 2 -0.28149357
## 5 9 1 0.6666667 TRUE 2 0.28149357
## 6 9 2 0.3333333 FALSE 1 0.66038185
## fitted
## 1 23.22530
## 2 23.22530
## 3 23.22530
## 4 23.59366
## 5 23.59366
## 6 23.65919
head(model$ComparisonResult)
## Protein Label log2FC SE Tvalue DF pvalue adj.pvalue issue
## 1 P0A8F4 Condition1 vs Condition2 -0.36836494 0.6911553 -0.53296987 8 0.60853706 0.77204073 <NA>
## 2 P0A8F4 Condition1 vs Condition3 -0.43389600 0.6911553 -0.62778367 8 0.54764284 0.97435691 <NA>
## 3 P0A8F4 Condition1 vs Condition4 -1.12564427 0.6181881 -1.82087672 8 0.10610956 0.10610956 <NA>
## 4 P0A8F4 Condition1 vs Condition5 -1.15790197 0.6181881 -1.87305776 8 0.09794554 0.09794554 <NA>
## 5 P0A8F4 Condition2 vs Condition3 -0.06553106 0.7571227 -0.08655276 8 0.93315414 0.96560198 <NA>
## 6 P0A8F4 Condition2 vs Condition4 -0.75727933 0.6911553 -1.09567178 8 0.30510791 0.30510791 <NA>
## MissingPercentage ImputationPercentage
## 1 0.7222222 0.5555556
## 2 0.6666667 0.5000000
## 3 0.6111111 0.6111111
## 4 0.6111111 0.6111111
## 5 0.7222222 0.3888889
## 6 0.6666667 0.5000000
Visualization for model-based analysis and summarizing differentially abundant
proteins. To summarize the results of log-fold changes and adjusted p-values
for differentially abundant proteins, groupComparisonPlots
takes testing
results from function groupComparison
as input and automatically generate
three types of figures in pdf files as output :
Volcano plot : For each comparison separately. It illustrates actual
log-fold changes and adjusted p-values for each comparison separately with all
proteins. The x-axis is the log fold change. The base of logarithm
transformation is the same as specified in “logTrans” from dataProcess
. The
y-axis is the negative log2 or log10 adjusted p-values. The horizontal dashed
line represents the FDR cutoff. The points below the FDR cutoff line are
non-significantly abundant proteins (colored in black). The points above the
FDR cutoff line are significantly abundant proteins (colored in red/blue for
up-/down-regulated). If fold change cutoff is specified (FCcutoff = specific
value), the points above the FDR cutoff line but within the FC cutoff line are
non-significantly abundant proteins (colored in black).
Heatmap : For multiple comparisons. It illustrates up-/down-regulated proteins for multiple comparisons with all proteins. Each column represents each comparison of interest. Each row represents each protein. Color red/blue represents proteins in that specific comparison are significantly up-regulated/down-regulated proteins with FDR cutoff and/or FC cutoff. The color scheme shows the evidences of significance. The darker color it is, the stronger evidence of significance it has. Color gold represents proteins are not significantly different in abundance.
Comparison plot : For multiple comparisons per protein. It illustrates log-fold change and its variation of multiple comparisons for single protein. X-axis is comparison of interest. Y-axis is the log fold change. The red points are the estimated log fold change from the model. The error bars are the confidence interval with 0.95 significant level for log fold change. This interval is only based on the standard error, which is estimated from the model.
groupComparisonPlots(
model$ComparisonResult,
type="Heatmap",
sig = 0.05,
FCcutoff = FALSE,
logBase.pvalue = 10,
ylimUp = FALSE,
ylimDown = FALSE,
xlimUp = FALSE,
x.axis.size = 10,
y.axis.size = 10,
dot.size = 3,
text.size = 4,
text.angle = 0,
legend.size = 13,
ProteinName = TRUE,
colorkey = TRUE,
numProtein = 100,
clustering = "both",
width = 800,
height = 600,
which.Comparison = "all",
which.Protein = "all",
address = FALSE,
isPlotly = FALSE
)
groupComparisonPlots(
model$ComparisonResult,
type="VolcanoPlot",
sig = 0.05,
FCcutoff = FALSE,
logBase.pvalue = 10,
ylimUp = FALSE,
ylimDown = FALSE,
xlimUp = FALSE,
x.axis.size = 10,
y.axis.size = 10,
dot.size = 3,
text.size = 4,
text.angle = 0,
legend.size = 13,
ProteinName = TRUE,
colorkey = TRUE,
numProtein = 100,
clustering = "both",
width = 800,
height = 600,
which.Comparison = "Condition2 vs Condition4",
which.Protein = "all",
address = FALSE,
isPlotly = FALSE
)
## [1] "labels"
## [1] "Condition2 vs Condition4"
To check and verify that the resultant data of groupComparison
offers a linear
model for whole plot inference, groupComparisonQC
plots take the fitted data
and provide two ways of plotting:
Results based on statistical models for whole plot level inference are accurate as long as the assumptions of the model are met. The model assumes that the measurement errors are normally distributed with mean 0 and constant variance. The assumption of a constant variance can be checked by examining the residuals from the model.
source("..//R//groupComparisonQCPlots.R")
groupComparisonQCPlots(data=model, type="QQPlots", address=FALSE,
which.Protein = "P0ABU9")
groupComparisonQCPlots(data=model, type="ResidualPlots", address=FALSE,
which.Protein = "P0ABU9")
Calculate sample size for future experiments of a Selected Reaction Monitoring (SRM), Data-Dependent Acquisition (DDA or shotgun), and Data-Independent Acquisition (DIA or SWATH-MS) experiment based on intensity-based linear model. The function fits the model and uses variance components to calculate sample size. The underlying model fitting with intensity-based linear model with technical MS run replication. Estimated sample size is rounded to 0 decimal. Two options of the calculation:
sample_size_calc = designSampleSize(model$FittedModel,
desiredFC=c(1.75,2.5),
power = TRUE,
numSample=5)
To illustrate the relationship of desired fold change and the calculated minimal number sample size which are
The input is the result from function designSampleSize
.
designSampleSizePlots(sample_size_calc, isPlotly=FALSE)
![plot of chunk Sample Size plot](figure/Sample Size plot-1.png)
Model-based quantification for each condition or for each biological samples
per protein in a targeted Selected Reaction Monitoring (SRM), Data-Dependent
Acquisition (DDA or shotgun), and Data-Independent Acquisition
(DIA or SWATH-MS) experiment. Quantification takes the processed data set by
dataProcess
as input and automatically generate the quantification results
(data.frame) with long or matrix format. The quantification for endogenous
samples is based on run summarization from subplot model, with TMP robust
estimation.
Sample quantification : individual biological sample quantification for
each protein. The label of each biological sample is a combination of the
corresponding group and the sample ID. If there are no technical replicates or
experimental replicates per sample, sample quantification is the same as run
summarization from dataProcess
(RunlevelData
from dataProcess
). If there
are technical replicates or experimental replicates, sample quantification is
median among run quantification corresponding MS runs.
Group quantification : quantification for individual group or individual condition per protein. It is median among sample quantification.
sample_quant_long = quantification(summarized,
type = "Sample",
format = "long")
sample_quant_long
## Protein Group_Subject LogIntensity
## <fctr> <fctr> <num>
## 1: P0A8F4 Condition1_1 23.27048
## 2: P0A8J2 Condition1_1 25.41377
## 3: P0ABU9 Condition1_1 23.94076
## 4: P60664 Condition1_1 26.95914
## 5: P0A8F4 Condition2_2 23.59366
## 6: P0A8J2 Condition2_2 25.37768
## 7: P0ABU9 Condition2_2 24.35179
## 8: P60664 Condition2_2 27.36184
## 9: P0A8F4 Condition3_3 23.65919
## 10: P0A8J2 Condition3_3 24.84218
## 11: P0ABU9 Condition3_3 23.97927
## 12: P60664 Condition3_3 26.89201
## 13: P0A8F4 Condition4_4 24.04638
## 14: P0A8J2 Condition4_4 NA
## 15: P0ABU9 Condition4_4 24.96019
## 16: P60664 Condition4_4 27.69317
## 17: P0A8F4 Condition5_5 24.50374
## 18: P0A8J2 Condition5_5 NA
## 19: P0ABU9 Condition5_5 25.42248
## 20: P60664 Condition5_5 27.98325
## Protein Group_Subject LogIntensity
sample_quant_wide = quantification(summarized,
type = "Sample",
format = "matrix")
sample_quant_wide
## Key: <Protein>
## Protein Condition1_1 Condition2_2 Condition3_3 Condition4_4 Condition5_5
## <fctr> <num> <num> <num> <num> <num>
## 1: P0A8F4 23.27048 23.59366 23.65919 24.04638 24.50374
## 2: P0A8J2 25.41377 25.37768 24.84218 NA NA
## 3: P0ABU9 23.94076 24.35179 23.97927 24.96019 25.42248
## 4: P60664 26.95914 27.36184 26.89201 27.69317 27.98325
group_quant_long = quantification(summarized,
type = "Group",
format = "long")
group_quant_long
## Protein Group LogIntensity
## <fctr> <fctr> <num>
## 1: P0A8F4 Condition1 23.27048
## 2: P0A8J2 Condition1 25.41377
## 3: P0ABU9 Condition1 23.94076
## 4: P60664 Condition1 26.95914
## 5: P0A8F4 Condition2 23.59366
## 6: P0A8J2 Condition2 25.37768
## 7: P0ABU9 Condition2 24.35179
## 8: P60664 Condition2 27.36184
## 9: P0A8F4 Condition3 23.65919
## 10: P0A8J2 Condition3 24.84218
## 11: P0ABU9 Condition3 23.97927
## 12: P60664 Condition3 26.89201
## 13: P0A8F4 Condition4 24.04638
## 14: P0A8J2 Condition4 NA
## 15: P0ABU9 Condition4 24.96019
## 16: P60664 Condition4 27.69317
## 17: P0A8F4 Condition5 24.50374
## 18: P0A8J2 Condition5 NA
## 19: P0ABU9 Condition5 25.42248
## 20: P60664 Condition5 27.98325
## Protein Group LogIntensity
group_quant_wide = quantification(summarized,
type = "Group",
format = "matrix")
group_quant_wide
## Key: <Protein>
## Protein Condition1 Condition2 Condition3 Condition4 Condition5
## <fctr> <num> <num> <num> <num> <num>
## 1: P0A8F4 23.27048 23.59366 23.65919 24.04638 24.50374
## 2: P0A8J2 25.41377 25.37768 24.84218 NA NA
## 3: P0ABU9 23.94076 24.35179 23.97927 24.96019 25.42248
## 4: P60664 26.95914 27.36184 26.89201 27.69317 27.98325