MsBackend
classesPackage: Spectra
Authors: RforMassSpectrometry Package Maintainer [cre],
Laurent Gatto [aut] (ORCID: https://orcid.org/0000-0002-1520-2268),
Johannes Rainer [aut] (ORCID: https://orcid.org/0000-0002-6977-7147),
Sebastian Gibb [aut] (ORCID: https://orcid.org/0000-0001-7406-4443),
Philippine Louail [aut] (ORCID:
https://orcid.org/0009-0007-5429-6846),
Jan Stanstrup [ctb] (ORCID: https://orcid.org/0000-0003-0541-7369),
Nir Shahaf [ctb],
Mar Garcia-Aloy [ctb] (ORCID: https://orcid.org/0000-0002-1330-6610)
Last modified: 2024-10-23 23:25:12.511366
Compiled: Thu Jan 16 19:18:38 2025
This vignette briefly describes the MsBackend
class which is used by the
Spectra
package to represent and provide Mass Spectrometry (MS) data and
illustrates how a new such backend class can be created and tested for
validity.
Contributions to this vignette (content or correction of typos) or requests for additional details and information are highly welcome (ideally via pull requests or github issues).
MsBackend
?The Spectra
package separates the code for the analysis of MS data from the
code needed to import, represent and provide the data. The former is implemented
for the Spectra
class which is the main object users will use for their
analyses. The Spectra
object relies on a so-called backend to provide the MS
data. The MsBackend
virtual class defines the API that new backend classes
need to implement in order to be used with the Spectra
object. Each Spectra
object contains an implementation of such a MsBackend
within its @backend
slot which provides the MS data to the Spectra
object. All data management is
thus hidden from the user. In addition this separation allows to define new,
alternative, data representations and integrate them seamlessly into a
Spectra
-based data analysis workflow.
This concept is an extension of the of in-memory and on-disk data representations from the MSnbase package (Gatto, Gibb, and Rainer 2020).
General conventions for MS data of a Spectra
are:
Spectra
object is supposed to contain MS (spectral) data of multiple
MS spectra.NA
) for m/z values are not supported.coreSpectraVariables()
function.dataStorage
and dataOrigin
are two special spectra variables that define
for each spectrum where the data is stored and from where the data derived (or
was loaded, such as the data origin). Both are expected to be of
typecharacter
and need to be defined by the backend (i.e., they can not be
empty or missing).MsBackend
implementations can also represent purely read-only data
resources. In this case only data accessor methods need to be implemented but
not data replacement methods. Whether a backend is read-only can be set with
the @readonly
slot of the virtual MsBackend
class (the isReadOnly()
function can be used to retrieve the value for this slot). The default is
@readonly = FALSE
and thus all data replacement method listed in section
Data replacement methods have to be implemented. For read-only backends
(@readonly = TRUE
) only the methods in section Required methods need to be
implemented. Backends can also be partially read-only, such as the
MsBackendMzR
. This backend allows for example to change spectra variables,
but not the peaks data (i.e. the m/z and intensity values). Also, backends for
purely read-only resources could extend the MsBackendCached
from the
Spectra package to enable support for modifying (or adding)
spectra variables. Any changes to spectra variables will be internally cached
by the MsBackendCached
without the need of them being propagating to the
underlying data resource (see for example the MsBackendMassbankSql
from the
MsBackendMassbank package).For parallel processing, Spectra
splits the backend based on a defined
factor
and processes each in parallel (or in serial if a SerialParam
is
used). The splitting factor
can be defined for Spectra
by setting the
parameter processingChunkSize
. Alternatively, through the
backendParallelFactor()
function the backend can also suggest a factor
that should/could be used for splitting and parallel processing. The default
implementation for backendParallelFactor()
is to return an empty factor
(factor()
) hence not suggesting any preferred
splitting. backendParallelFactor()
for MsBackendMzR
on the other hand
returns a factor
based on the data files the data is stored in (i.e. based
on the dataStorage
of the MS data).
Besides parallel processing, this chunk-wise processing can also reduce the memory demand for operations, because only the peak data of the current chunk needs to be realized in memory.
The MsBackend
class defines core methods that have to be implemented by a MS
backend as well as optional methods with default implementations that might
be implemented for a new backend but don’t necessarily have to. These functions
are described in sections Required methods and Optional methods,
respectively.
To create a new backend a class extending the virtual MsBackend
needs to be
implemented. In the example below we create thus a simple class with a
data.frame
to contain general spectral properties (spectra variables) and
two slots for m/z and intensity values. These are stored as NumericList
objects since both m/z and intensity values are expected to be of type numeric
and to allow to store data from multiple spectra into a single backend
object. We also define a simple constructor function that returns an empty
instance of our new class.
library(Spectra)
library(IRanges)
setClass("MsBackendTest",
contains = "MsBackend",
slots = c(
spectraVars = "data.frame",
mz = "NumericList",
intensity = "NumericList"
),
prototype = prototype(
spectraVars = data.frame(),
mz = NumericList(compress = FALSE),
intensity = NumericList(compress = FALSE)
))
MsBackendTest <- function() {
new("MsBackendTest")
}
The 3 slots spectraVars
, mz
and intensity
will be used to store our MS
data, each row in spectraVars
being data for one spectrum with the columns
being the different spectra variables (i.e. additional properties of a
spectrum such as its retention time or MS level) and each element in mz
and
intensity
being a numeric
with the m/z and intensity values of the
respective spectrum.
We should ideally also add some basic validity function that ensures the data to
be OK. The function below simply checks that the number of rows of the
spectraVars
slot matches the length of the mz
and intensity
slot.
setValidity("MsBackendTest", function(object) {
if (length(object@mz) != length(object@intensity) ||
length(object@mz) != nrow(object@spectraVars))
return("length of 'mz' and 'intensity' has to match the number of ",
"rows of 'spectraVars'")
NULL
})
## Class "MsBackendTest" [in ".GlobalEnv"]
##
## Slots:
##
## Name: spectraVars mz intensity readonly version
## Class: data.frame NumericList NumericList logical character
##
## Extends: "MsBackend"
We can now create an instance of our new class with the MsBackendTest()
function.
MsBackendTest()
## An object of class "MsBackendTest"
## Slot "spectraVars":
## data frame with 0 columns and 0 rows
##
## Slot "mz":
## NumericList of length 0
##
## Slot "intensity":
## NumericList of length 0
##
## Slot "readonly":
## [1] FALSE
##
## Slot "version":
## [1] "0.1"
Note that a backend class does not necessarily need to contain all the data
like the one from our example. Backends such as the MsBackendMzR
for example
retrieve the data on the fly from the raw MS data files or the MsBackendSql
from the MsBackendSql a SQL database.
Methods listed in this section must be implemented for a new class extending
MsBackend
. Methods should ideally also implemented in the order they are
listed here. Also, it is strongly advised to write dedicated unit tests for
each newly implemented method or function already during the development.
dataStorage()
The dataStorage
spectra variable of a spectrum provides some information how
or where the data is stored. The dataStorage()
method should therefor return a
character
vector with length equal to the number of spectra of a backend
object with that information. For most backends the data storage information can
be a simple string such as "memory"
or "database"
to specify that the data
of a spectrum is stored within the object itself or in a database,
respectively.
Backend classes that keep only a subset of the MS data in memory and need to
load data from data files upon request will use this spectra variable to store
and keep track of the original data file for each spectrum. An example is the
MsBackendMzR
backend that retrieves the MS data on-the-fly from the original
data file(s) whenever m/z or intensity values are requested from the
backend. Calling dataStorage()
on an MsBackendMzR
returns thus the names
from the originating files.
For our example backend we define a simple dataStorage()
method that simply
returns the column "dataStorage"
from the @svars
(as a character
).
setMethod("dataStorage", "MsBackendTest", function(object) {
as.character(object@spectraVars$dataStorage)
})
length()
length()
is expected to return a single integer
with the total number of
spectra that are available through the backend class. For our example backend we
simply return the number of rows of the data.frame
stored in the
@spectraVars
slot.
setMethod("length", "MsBackendTest", function(x) {
nrow(x@spectraVars)
})
backendInitialize()
The backendInitialize()
method is expected to be called after creating an
instance of the backend class and should prepare (initialize) the backend which
in most cases means that MS data is loaded. This method can take any parameters
needed by the backend to get loaded/initialized with data (which can be file
names from which to load the data, a database connection or object(s) containing
the data). During backendInitialize()
usually also the special spectra
variables dataStorage
and dataOrigin
are set.
Below we define a backendInitialize()
method that takes as arguments a
data.frame
with spectra variables and two list
s with the m/z and intensity
values for each spectrum.
setMethod(
"backendInitialize", "MsBackendTest",
function(object, svars, mz, intensity) {
if (!is.data.frame(svars))
stop("'svars' needs to be a 'data.frame' with spectra variables")
if (is.null(svars$dataStorage))
svars$dataStorage <- "<memory>"
if (is.null(svars$dataOrigin))
svars$dataOrigin <- "<user provided>"
object@spectraVars <- svars
object@mz <- NumericList(mz, compress = FALSE)
object@intensity <- NumericList(intensity, compress = FALSE)
validObject(object)
object
})
In addition to adding the data to object, the function also defined the
dataStorage
and dataOrigin
spectra variables. The purpose of these two
variables is to provide some information on where the data is stored (in
memory as in our example) and from where the data is originating. The
dataOrigin
would for example allow to specify from which original data files
individual spectra derive.
We can now create an instance of our backend class and fill it with data. We
thus first define our MS data and pass this to the backendInitialize()
method.
## A data.frame with spectra variables.
svars <- data.frame(msLevel = c(1L, 2L, 2L),
rtime = c(1.2, 1.3, 1.4))
## m/z values for each spectrum.
mzs <- list(c(12.3, 13.5, 16.5, 17.5),
c(45.1, 45.2),
c(64.4, 123.1, 124.1))
## intensity values for each spectrum.
ints <- list(c(123.3, 153.6, 2354.3, 243.4),
c(100, 80.1),
c(12.3, 35.2, 100))
## Create and initialize the backend
be <- backendInitialize(MsBackendTest(),
svars = svars, mz = mzs, intensity = ints)
be
## An object of class "MsBackendTest"
## Slot "spectraVars":
## msLevel rtime dataStorage dataOrigin
## 1 1 1.2 <memory> <user provided>
## 2 2 1.3 <memory> <user provided>
## 3 2 1.4 <memory> <user provided>
##
## Slot "mz":
## NumericList of length 3
## [[1]] 12.3 13.5 16.5 17.5
## [[2]] 45.1 45.2
## [[3]] 64.4 123.1 124.1
##
## Slot "intensity":
## NumericList of length 3
## [[1]] 123.3 153.6 2354.3 243.4
## [[2]] 100 80.1
## [[3]] 12.3 35.2 100
##
## Slot "readonly":
## [1] FALSE
##
## Slot "version":
## [1] "0.1"
While this method works and is compliant with the MsBackend
API (because there
is no requirement on the input parameters for the backendInitialize()
method),
it would be good practice for backends that are supposed to support replacing
data, to add an optional additional parameter data
that would allow passing
the complete MS data (including m/z and intensity values) to the function as a
DataFrame
. This would simplify the implementation of some replacement methods
and would in addition also allow to change the backend of a Spectra
using the
setBackend()
to our new backend. We thus re-implement the
backendInitialize()
method supporting also to initialize the backend with such
a data frame and we also implement a helper function that checks spectra
variables for the correct data type.
#' Helper function to check if core spectra variables have the correct
#' data type.
#'
#' @param x `data.frame` with the data for spectra variables.
#'
#' @param name `character` defining the column names (spectra variables) of `x`
#' for which the correct data type should be evaluated.
.sv_valid_data_type <- function(x, name = colnames(x)) {
sv <- coreSpectraVariables()[names(coreSpectraVariables()) %in% name]
for (i in seq_along(sv)) {
if (!is(x[, names(sv[i])], sv[i]))
stop("Spectra variabe \"", names(sv[i]), "\" is not of type ",
sv[i], call. = FALSE)
}
TRUE
}
This function is then used to check the input data in our new
backendInitialize()
method.
setMethod(
"backendInitialize", "MsBackendTest",
function(object, svars, mz, intensity, data) {
if (!missing(data)) {
svars <- as.data.frame(
data[, !colnames(data) %in% c("mz", "intensity")])
if (any(colnames(data) == "mz"))
mz <- data$mz
if (any(colnames(data) == "intensity"))
intensity <- data$intensity
}
if (!is.data.frame(svars))
stop("'svars' needs to be a 'data.frame' with spectra variables")
if (is.null(svars$dataStorage))
svars$dataStorage <- "<memory>"
if (is.null(svars$dataOrigin))
svars$dataOrigin <- "<user provided>"
.sv_valid_data_type(svars)
object@spectraVars <- svars
object@mz <- NumericList(mz, compress = FALSE)
object@intensity <- NumericList(intensity, compress = FALSE)
validObject(object)
object
})
We below create the backend again with the updated backendInitialize()
.
## Create and initialize the backend
be <- backendInitialize(MsBackendTest(),
svars = svars, mz = mzs, intensity = ints)
be
## An object of class "MsBackendTest"
## Slot "spectraVars":
## msLevel rtime dataStorage dataOrigin
## 1 1 1.2 <memory> <user provided>
## 2 2 1.3 <memory> <user provided>
## 3 2 1.4 <memory> <user provided>
##
## Slot "mz":
## NumericList of length 3
## [[1]] 12.3 13.5 16.5 17.5
## [[2]] 45.1 45.2
## [[3]] 64.4 123.1 124.1
##
## Slot "intensity":
## NumericList of length 3
## [[1]] 123.3 153.6 2354.3 243.4
## [[2]] 100 80.1
## [[3]] 12.3 35.2 100
##
## Slot "readonly":
## [1] FALSE
##
## Slot "version":
## [1] "0.1"
The backendInitialize()
method that we implemented for our backend class
expects the user to provide the full MS data. This does however not always have
to be the case. The backendInitialize()
method of the MsBackendMzR
backend
takes for example the file names of the raw mzML, mzXML or CDF files as input
and initializes the backend by importing part of the data from these. Also the
backends defined by the MsBackendMgf or r Biocpkg("MsBackendMsp")
packages work in the same way and thus allow to import
MS data from these specific file formats. The backendInitialize()
method of
the backend defined in the MsBackendSql on the other hand takes
only the connection to a database containing the data as input and performs some
sanity checks on the data but does not load the data into the backend. Any
subsequent data access is handled by the methods of the backend class through
SQL calls to the database.
The purpose of the backendInitialize()
method is to initialize and prepare
the data in a way that it can be accessed by a Spectra
object (through the
initialized backend class). Whether the data is loaded by the
backendInitialize()
method into memory or simply referenced to within the
backend class does not matter as long as the backend is able to provide the data
with its accessor methods.
Note also that a backendInitialize()
function should ideally also perform some
data sanity checks (e.g. whether spectra variables have the correct data type
etc).
spectraVariables()
The spectraVariables()
method should return a character
vector with the
names of all available spectra variables of the backend. While a backend class
should support defining and providing their own spectra variables, each
MsBackend
class must provide also the core spectra variables (in the
correct data type). Since not all data file formats provide values for all these
spectra variables they can however also be NA
(with the exception of the
spectra variable "dataStorage"
).
The coreSpectraVariables()
function returns the full list of mandatory spectra
variables along with their expected data type.
coreSpectraVariables()
## msLevel rtime acquisitionNum
## "integer" "numeric" "integer"
## scanIndex mz intensity
## "integer" "NumericList" "NumericList"
## dataStorage dataOrigin centroided
## "character" "character" "logical"
## smoothed polarity precScanNum
## "logical" "integer" "integer"
## precursorMz precursorIntensity precursorCharge
## "numeric" "numeric" "integer"
## collisionEnergy isolationWindowLowerMz isolationWindowTargetMz
## "numeric" "numeric" "numeric"
## isolationWindowUpperMz
## "numeric"
A typical spectraVariables()
method for a MsBackend
class will thus be
implemented similarly to the one for our MsBackendTest
test backend: it will
return the union of the core spectra variables and the names for all available
spectra variables within the backend object.
setMethod("spectraVariables", "MsBackendTest", function(object) {
union(names(coreSpectraVariables()), colnames(object@spectraVars))
})
spectraVariables(be)
## [1] "msLevel" "rtime"
## [3] "acquisitionNum" "scanIndex"
## [5] "mz" "intensity"
## [7] "dataStorage" "dataOrigin"
## [9] "centroided" "smoothed"
## [11] "polarity" "precScanNum"
## [13] "precursorMz" "precursorIntensity"
## [15] "precursorCharge" "collisionEnergy"
## [17] "isolationWindowLowerMz" "isolationWindowTargetMz"
## [19] "isolationWindowUpperMz"
spectraData()
The spectraData()
method should return the full spectra data within a
backend as a DataFrame
object (defined in the S4Vectors
package). The second parameter columns
allows to define the names of the
spectra variables that should be returned in the DataFrame
. Each row in this
data frame should represent one spectrum, each column a spectra
variable. Columns "mz"
and "intensity"
(if requested) have to contain each a
NumericList
with the m/z and intensity values of the spectra. The DataFrame
must provide values (even if they are NA
) for all requested spectra
variables of the backend (including the core spectra variables).
This is now a first problem for our toy backend class, since we keep the spectra
variable data in a simple data.frame
without any constraints such as required
columns etc. A simple solution to this (which is also used by all backend
classes in the Spectra
package) is to fill missing spectra variables
on-the-fly into the returned DataFrame
. We thus define below a simple helper
function that adds columns with missing values (of the correct data type) for
core spectra variables that are not available within the backend to the result.
#' @description Add columns with missing core spectra variables.
#'
#' @param x `data.frame` or `DataFrame` with some spectra variables.
#'
#' @param core_vars `character` with core spectra variable names that should
#' be added to `x` if not already present.
#'
.fill_core_variables <- function(x, core_vars = names(coreSpectraVariables())) {
fill_vars <- setdiff(core_vars, colnames(x))
core_type <- coreSpectraVariables()
n <- nrow(x)
if (length(fill_vars)) {
fill <- lapply(fill_vars, function(z) {
rep(as(NA, core_type[z]), n)
})
names(fill) <- fill_vars
x <- cbind(x, as.data.frame(fill))
}
x
}
We next implement the spectraData()
method that uses this helper function to
fill eventually missing core spectra variables. Note also that this function
should return a DataFrame
even for a single column.
setMethod(
"spectraData", "MsBackendTest",
function(object, columns = spectraVariables(object)) {
if (!all(columns %in% spectraVariables(object)))
stop("Some of the requested spectra variables are not available")
## Add m/z and intensity values to the result
res <- DataFrame(object@spectraVars)
res$mz <- object@mz
res$intensity <- object@intensity
## Fill with eventually missing core variables
res <- .fill_core_variables(
res, intersect(columns, names(coreSpectraVariables())))
res[, columns, drop = FALSE]
})
As an alternative, we could also initialize the @spectraVars
data frame within
the backendInitialize()
method adding columns for spectra variables that are
not provided by the user and require that this data frame always contains all
core spectra variables. Extracting spectra data (single spectra variables or the
full data) might thus be more efficient then the on-the-fly initialization with
eventual missing spectra variables, but the backend class would also have a
larger memory footprint because even spectra variables with only missing values
for all spectra need to be stored within the object.
We can now use spectraData()
to either extract the full spectra data from the
backend, or only the data for selected spectra variables.
## Full data
spectraData(be)
## DataFrame with 3 rows and 19 columns
## msLevel rtime acquisitionNum scanIndex mz
## <integer> <numeric> <integer> <integer> <NumericList>
## 1 1 1.2 NA NA 12.3,13.5,16.5,...
## 2 2 1.3 NA NA 45.1,45.2
## 3 2 1.4 NA NA 64.4,123.1,124.1
## intensity dataStorage dataOrigin centroided smoothed
## <NumericList> <character> <character> <logical> <logical>
## 1 123.3, 153.6,2354.3,... <memory> <user provided> NA NA
## 2 100.0, 80.1 <memory> <user provided> NA NA
## 3 12.3, 35.2,100.0 <memory> <user provided> NA NA
## polarity precScanNum precursorMz precursorIntensity precursorCharge
## <integer> <integer> <numeric> <numeric> <integer>
## 1 NA NA NA NA NA
## 2 NA NA NA NA NA
## 3 NA NA NA NA NA
## collisionEnergy isolationWindowLowerMz isolationWindowTargetMz
## <numeric> <numeric> <numeric>
## 1 NA NA NA
## 2 NA NA NA
## 3 NA NA NA
## isolationWindowUpperMz
## <numeric>
## 1 NA
## 2 NA
## 3 NA
## Selected variables
spectraData(be, c("rtime", "mz", "centroided"))
## DataFrame with 3 rows and 3 columns
## rtime mz centroided
## <numeric> <NumericList> <logical>
## 1 1.2 12.3,13.5,16.5,... NA
## 2 1.3 45.1,45.2 NA
## 3 1.4 64.4,123.1,124.1 NA
## Only missing core spectra variables
spectraData(be, c("centroided", "polarity"))
## DataFrame with 3 rows and 2 columns
## centroided polarity
## <logical> <integer>
## 1 NA NA
## 2 NA NA
## 3 NA NA
peaksData()
The peaksData()
method extracts the MS peaks data from a backend, which
includes the m/z and intensity values of each MS peak of a spectrum. These are
expected to be returned as a List
of numerical matrices with columns in each
matrix
being the requested peaks variables (with the default being "mz"
and "intensity"
) of one spectrum. Backends must provide at least these two
peaks variables.
Below we implement the peaksData()
method for our backend. We need to loop
over the @mz
and @intensity
slots to merge the m/z and intensity of each
spectrum into a matrix
. Also, for simplicity reasons, we accept only c("mz", "intensity")
for the columns
parameter. This is the expected default behavior
for a MsBackend
, but in general the columns
parameter is thought to allow
the user to specify which peaks variables should be returned in each matrix
.
setMethod(
"peaksData", "MsBackendTest",
function(object, columns = c("mz", "intensity")) {
if (length(columns) != 2 && columns != c("mz", "intensity"))
stop("'columns' supports only \"mz\" and \"intensity\"")
mapply(mz = object@mz, intensity = object@intensity,
FUN = cbind, SIMPLIFY = FALSE, USE.NAMES = FALSE)
})
And with this method we can now extract the peaks data from our backend.
peaksData(be)
## [[1]]
## mz intensity
## [1,] 12.3 123.3
## [2,] 13.5 153.6
## [3,] 16.5 2354.3
## [4,] 17.5 243.4
##
## [[2]]
## mz intensity
## [1,] 45.1 100.0
## [2,] 45.2 80.1
##
## [[3]]
## mz intensity
## [1,] 64.4 12.3
## [2,] 123.1 35.2
## [3,] 124.1 100.0
The peaksData()
method is used in many data analysis functions of the
Spectra
object to extract the MS data, thus ideally this method should be
implemented in an efficient way. For our backend we need to loop over the lists
of m/z and intensity values which is obviously not ideal. Thus, storing the m/z
and intensity values in separate slots as done in this backend might not be
ideal. The MsBackendMemory
backend for example stores the MS data already as a
list
of matrices which results in a more efficient peaksData()
method (but
comes also with a larger overhead when adding, replacing or checking MS data).
Note also that while a backend needs to provide m/z and intensity values,
additional peak variables would also be supported. The MsBackendMemory
class
for example allows to store and provide additional peak variables that can then
be added as additional columns to each returned matrix
. In this case the
default peaksVariables()
method should also be overwritten to list the
additionally available variables and the columns
parameter of the
peaksData()
method should allow selection of these additional peaks variables
(in addition to the required "mz"
and "intensity"
variables).
extractByIndex()
and [
The extractByIndex()
and [
methods allows to subset MsBackend
objects.
This operation is expected to reduce a MsBackend
object to the selected
spectra. These methods must also support duplication (e.g. [c(1, 1, 1)]
and
extraction in any arbitrary order (e.g. [c(3, 1, 5, 3)]
). While both methods
subset the object, extractByIndex()
only supports to subset with an integer
index, while [
, to be compliant with the base R implementation, should support
to subset by indices or logical vectors. An error should be thrown if indices
are out of bounds, but the method should also support returning an empty backend
with [integer()]
. Note that the MsCoreUtils::i2index
function can be used to
check for correct input (and convert the input to an integer
index).
The extractByIndex()
method is used by the data operation and analysis methods
on Spectra
objects, while the [
is intended to be used by the end user (if
needed). Below we implement extractByIndex()
for our backend:
setMethod("extractByIndex", c("MsBackendTest", "ANY"), function(object, i) {
object@spectraVars <- object@spectraVars[i, ]
object@mz <- object@mz[i]
object@intensity <- object@intensity[i]
object
})
The [
does not need to be defined because a default implementation for
the base MsBackend
exists.
We can now subset our backend to the last two spectra.
a <- extractByIndex(be, 2:3)
spectraData(a)
## DataFrame with 2 rows and 19 columns
## msLevel rtime acquisitionNum scanIndex mz
## <integer> <numeric> <integer> <integer> <NumericList>
## 1 2 1.3 NA NA 45.1,45.2
## 2 2 1.4 NA NA 64.4,123.1,124.1
## intensity dataStorage dataOrigin centroided smoothed polarity
## <NumericList> <character> <character> <logical> <logical> <integer>
## 1 100.0, 80.1 <memory> <user provided> NA NA NA
## 2 12.3, 35.2,100.0 <memory> <user provided> NA NA NA
## precScanNum precursorMz precursorIntensity precursorCharge collisionEnergy
## <integer> <numeric> <numeric> <integer> <numeric>
## 1 NA NA NA NA NA
## 2 NA NA NA NA NA
## isolationWindowLowerMz isolationWindowTargetMz isolationWindowUpperMz
## <numeric> <numeric> <numeric>
## 1 NA NA NA
## 2 NA NA NA
Or extracting the second spectrum multiple times.
a <- be[c(2, 2, 2)]
spectraData(a)
## DataFrame with 3 rows and 19 columns
## msLevel rtime acquisitionNum scanIndex mz intensity
## <integer> <numeric> <integer> <integer> <NumericList> <NumericList>
## 2 2 1.3 NA NA 45.1,45.2 100.0, 80.1
## 2.1 2 1.3 NA NA 45.1,45.2 100.0, 80.1
## 2.2 2 1.3 NA NA 45.1,45.2 100.0, 80.1
## dataStorage dataOrigin centroided smoothed polarity precScanNum
## <character> <character> <logical> <logical> <integer> <integer>
## 2 <memory> <user provided> NA NA NA NA
## 2.1 <memory> <user provided> NA NA NA NA
## 2.2 <memory> <user provided> NA NA NA NA
## precursorMz precursorIntensity precursorCharge collisionEnergy
## <numeric> <numeric> <integer> <numeric>
## 2 NA NA NA NA
## 2.1 NA NA NA NA
## 2.2 NA NA NA NA
## isolationWindowLowerMz isolationWindowTargetMz isolationWindowUpperMz
## <numeric> <numeric> <numeric>
## 2 NA NA NA
## 2.1 NA NA NA
## 2.2 NA NA NA
backendMerge()
The backendMerge()
method merges (combines) MsBackend
objects (of the same
type!) into a single instance. For our test backend we thus need to combine the
values in the @spectraVars
, @mz
and @intensity
slots. To support also
merging of data.frame
s with different set of columns we use the
MsCoreUtils::rbindFill()
function instead of a simple rbind()
(this function
joins data frames making an union of all available columns).
setMethod("backendMerge", "MsBackendTest", function(object, ...) {
res <- object
object <- unname(c(object, ...))
res@mz <- do.call(c, lapply(object, function(z) z@mz))
res@intensity <- do.call(c, lapply(object, function(z) z@intensity))
res@spectraVars <- do.call(MsCoreUtils::rbindFill,
lapply(object, function(z) z@spectraVars))
validObject(res)
res
})
Again, this implementation which requires 3 loops might not be the most
efficient - but it allows to merge backends of the type MsBackendTest
.
a <- backendMerge(be, be[2], be)
a
## An object of class "MsBackendTest"
## Slot "spectraVars":
## msLevel rtime dataStorage dataOrigin
## 1 1 1.2 <memory> <user provided>
## 2 2 1.3 <memory> <user provided>
## 3 2 1.4 <memory> <user provided>
## 21 2 1.3 <memory> <user provided>
## 11 1 1.2 <memory> <user provided>
## 22 2 1.3 <memory> <user provided>
## 31 2 1.4 <memory> <user provided>
##
## Slot "mz":
## NumericList of length 7
## [[1]] 12.3 13.5 16.5 17.5
## [[2]] 45.1 45.2
## [[3]] 64.4 123.1 124.1
## [[4]] 45.1 45.2
## [[5]] 12.3 13.5 16.5 17.5
## [[6]] 45.1 45.2
## [[7]] 64.4 123.1 124.1
##
## Slot "intensity":
## NumericList of length 7
## [[1]] 123.3 153.6 2354.3 243.4
## [[2]] 100 80.1
## [[3]] 12.3 35.2 100
## [[4]] 100 80.1
## [[5]] 123.3 153.6 2354.3 243.4
## [[6]] 100 80.1
## [[7]] 12.3 35.2 100
##
## Slot "readonly":
## [1] FALSE
##
## Slot "version":
## [1] "0.1"
$
The $
method is expected to extract a single spectra variable from a
backend. Parameter name
should allow to name the spectra variable to
return. Each MsBackend
must support extracting the core spectra variables
with this method (even if no data might be available for that variable). In our
example implementation below we make use of the spectraData()
method, but more
efficient implementations might be available as well (that would not require to
first subset/create a DataFrame
with the full data and to then subset that
again). Also, the $
method should check if the requested spectra variable is
available and should throw an error otherwise.
setMethod("$", "MsBackendTest", function(x, name) {
spectraData(x, columns = name)[, 1L]
})
With this we can now extract the MS levels
be$msLevel
## [1] 1 2 2
or a core spectra variable that is not available within the backend.
be$precursorMz
## [1] NA NA NA
or also the m/z values
be$mz
## NumericList of length 3
## [[1]] 12.3 13.5 16.5 17.5
## [[2]] 45.1 45.2
## [[3]] 64.4 123.1 124.1
lengths()
The lengths()
method is expected to return an integer
vector (same length as
the number of spectra in the backend) with the total number of peaks per
spectrum.
For our MsBackendTest
we can simply use the lengths()
method on the m/z or
intensity values for that.
setMethod("lengths", "MsBackendTest", function(x, use.names = FALSE) {
lengths(x@mz, use.names = use.names)
})
And we can now get the peaks count per spectrum:
lengths(be)
## [1] 4 2 3
isEmpty()
The isEmpty()
method is expected to return for each spectrum the information
whether it is empty, i.e. does not contain any MS peaks (and hence m/z or
intensity values). The result of the method has to be a logical
of length
equal to the number of spectra represented by the backend with TRUE
indicating
whether a spectrum is empty and FALSE
otherwise. For our implementation of the
isEmpty()
method we use the lenghts()
method defined above that returns the
number of MS peaks per spectrum.
setMethod("isEmpty", "MsBackendTest", function(x) {
lengths(x) == 0L
})
isEmpty(be)
## [1] FALSE FALSE FALSE
acquisitionNum()
Extract the acquisitionNum
core spectra variable. The method is expected to
return an integer
vector with the same length as there are spectra represented
by the backend. For our backend we simply re-use the spectraData()
method.
setMethod("acquisitionNum", "MsBackendTest", function(object) {
spectraData(object, "acquisitionNum")[, 1L]
})
acquisitionNum(be)
## [1] NA NA NA
centroided()
Extract for each spectrum the information whether it contains centroided
data. The method is expected to return a logical
vector with the same length
as there are spectra represented by the backend.
setMethod("centroided", "MsBackendTest", function(object) {
spectraData(object, "centroided")[, 1L]
})
centroided(be)
## [1] NA NA NA
collisionEnergy()
Extract for each spectrum the collision energy applied to generate the fragment
spectrum. The method is expected to return a numeric
vector with the same
length as there are spectra represented by the backend (with NA_real_
for
spectra for which this information is not available, such as MS1 spectra).
setMethod("collisionEnergy", "MsBackendTest", function(object) {
spectraData(object, "collisionEnergy")[, 1L]
})
collisionEnergy(be)
## [1] NA NA NA
dataOrigin()
Extract the data origin spectra variable for each spectrum. This spectra
variable can be used to store the origin of each spectra. The method is expected
to return a character
vector of length equal to the number of spectra
represented by the backend.
setMethod("dataOrigin", "MsBackendTest", function(object) {
spectraData(object, "dataOrigin")[, 1L]
})
dataOrigin(be)
## [1] "<user provided>" "<user provided>" "<user provided>"
intensity()
Extract the intensity values for each spectrum in the backend. The result is
expected to be a NumericList
of length equal to the number of spectra
represented by the backend. For our test backend we can simply return the
@intensity
slot since the data is already stored within a NumericList
.
setMethod("intensity", "MsBackendTest", function(object) {
object@intensity
})
intensity(be)
## NumericList of length 3
## [[1]] 123.3 153.6 2354.3 243.4
## [[2]] 100 80.1
## [[3]] 12.3 35.2 100
isolationWindowLowerMz()
Extract the core spectra variable isolationWindowLowerMz
from the
backend. This information is usually provided for each spectrum in the raw mzML
files. The method is expected to return a numeric
vector of length equal to
the number of spectra represented by the backend.
setMethod("isolationWindowLowerMz", "MsBackendTest", function(object) {
spectraData(object, "isolationWindowLowerMz")[, 1L]
})
isolationWindowLowerMz(be)
## [1] NA NA NA
isolationWindowTargetMz()
Extract the core spectra variable isolationWindowTargetMz
from the
backend. This information is usually provided for each spectrum in the raw mzML
files. The method is expected to return a numeric
vector of length equal to
the number of spectra represented by the backend.
setMethod("isolationWindowTargetMz", "MsBackendTest", function(object) {
spectraData(object, "isolationWindowTargetMz")[, 1L]
})
isolationWindowTargetMz(be)
## [1] NA NA NA
isolationWindowUpperMz()
Extract the core spectra variable isolationWindowUpperMz
from the
backend. This information is usually provided for each spectrum in the raw mzML
files. The method is expected to return a numeric
vector of length equal to
the number of spectra represented by the backend.
setMethod("isolationWindowUpperMz", "MsBackendTest", function(object) {
spectraData(object, "isolationWindowUpperMz")[, 1L]
})
isolationWindowUpperMz(be)
## [1] NA NA NA
msLevel()
Extract the MS level for each spectrum in the backend. This method is expected
to return an integer
of length equal to the number of spectra represented by
the backend.
setMethod("msLevel", "MsBackendTest", function(object) {
spectraData(object, "msLevel")[, 1L]
})
msLevel(be)
## [1] 1 2 2
mz()
Extract the m/z values for each spectrum in the backend. The result is
expected to be a NumericList
of length equal to the number of spectra
represented by the backend. Also, the m/z values are expected to be ordered
increasingly for each element (spectrum).
setMethod("mz", "MsBackendTest", function(object) {
object@mz
})
mz(be)
## NumericList of length 3
## [[1]] 12.3 13.5 16.5 17.5
## [[2]] 45.1 45.2
## [[3]] 64.4 123.1 124.1
polarity()
Extract the polarity
core spectra variable for each spectrum in the
backend. This method is expected to return an integer
of length equal to the
number of spectra represented by the backend. Negative and positive polarity are
expected to be encoded by 0L
and 1L
, respectively.
setMethod("polarity", "MsBackendTest", function(object) {
spectraData(object, "polarity")[, 1L]
})
polarity(be)
## [1] NA NA NA
precScanNum()
Extract the acquisition number of the precursor for each spectrum. This method
is expected to return an integer
of length equal to the number of spectra
represented by the backend. For MS1 spectra (or if the acquisition number of the
precursor is not provided) NA_integer_
has to be returned.
setMethod("precScanNum", "MsBackendTest", function(object) {
spectraData(object, "precScanNum")[, 1L]
})
precScanNum(be)
## [1] NA NA NA
precursorCharge()
Extract the charge of the precursor for each spectrum. This method
is expected to return an integer
of length equal to the number of spectra
represented by the backend. For MS1 spectra (or if the charge of the
precursor is not provided) NA_integer_
has to be returned.
setMethod("precursorCharge", "MsBackendTest", function(object) {
spectraData(object, "precursorCharge")[, 1L]
})
precursorCharge(be)
## [1] NA NA NA
precursorIntensity()
Extract the intensity of the precursor for each spectrum. This method is
expected to return an numeric
of length equal to the number of spectra
represented by the backend. For MS1 spectra (or if the precursor intensity for a
fragment spectrum is not provided) NA_real_
has to be returned.
setMethod("precursorIntensity", "MsBackendTest", function(object) {
spectraData(object, "precursorIntensity")[, 1L]
})
precursorIntensity(be)
## [1] NA NA NA
precursorMz()
Extract the precursor m/z for each spectrum. This method is
expected to return an numeric
of length equal to the number of spectra
represented by the backend. For MS1 spectra (or if the precursor m/z for a
fragment spectrum is not provided) NA_real_
has to be returned.
setMethod("precursorMz", "MsBackendTest", function(object) {
spectraData(object, "precursorMz")[, 1L]
})
precursorMz(be)
## [1] NA NA NA
rtime()
Extract the retention time of each spectrum. This method is expected to return a
numeric
of length equal to the number of spectra represented by the backend.
setMethod("rtime", "MsBackendTest", function(object) {
spectraData(object, "rtime")[, 1L]
})
rtime(be)
## [1] 1.2 1.3 1.4
scanIndex()
Extract the scan index core spectra variable. The scan index represents the
relative index of the spectrum within the respective raw data file and can be
different than the acquisitionNum
(which is the index of a spectrum as
recorded by the MS instrument). This method is expected to return a integer
of
length equal to the number of spectra represented by the backend.
setMethod("scanIndex", "MsBackendTest", function(object) {
spectraData(object, "scanIndex")[, 1L]
})
scanIndex(be)
## [1] NA NA NA
smoothed()
Extract the smoothed
core spectra variable that indicates whether a spectrum
was smoothed. This variable is supported for backward compatibility but
seldomly used. The method is expected to return a logical
with length equal to
the number of spectra represented by the backend.
setMethod("smoothed", "MsBackendTest", function(object) {
spectraData(object, "smoothed")[, 1L]
})
smoothed(be)
## [1] NA NA NA
spectraNames()
The spectraNames()
can be used to extract (optional) names (or IDs) for
individual spectra of a backend, or NULL
if not set. For our test backend we
can use the rownames
of the @spectraVars
slot to store spectra names.
setMethod("spectraNames", "MsBackendTest", function(object) {
rownames(object@spectraVars)
})
spectraNames(be)
## [1] "1" "2" "3"
These are all the methods that need to be implemented for a valid read-only
MsBackend
class and running a test on such an object as described in section
Testing the validity of the backend should not produce any errors. For
backends that support also data replacement also the methods listed in the next
section need to be implemented.
tic()
The tic()
method should return the total ion count (i.e. the sum of
intensities) for each spectrum. This information is usually also provided by the
raw MS data files, but can also be calculated on the fly from the data. The
parameter initial
(which is by default TRUE
) allows to define whether the
provided original tic should be returned (for initial = TRUE
) or whether the
tic should be calculated on the actual data (initial = FALSE
). The original
tic values are usually provided by a spectra variable "totIonCurrent"
. Thus,
for initial = TRUE
, in our implementation below we return the value of such a
spectra variable it it is avaialble or NA
if it is not.
setMethod("tic", "MsBackendTest", function(object, initial = TRUE) {
if (initial) {
if (any(spectraVariables(object) == "totIonCurrent"))
spectraData(object, "totIonCurrent")[, 1L]
else rep(NA_real_, length(object))
} else vapply(intensity(object), sum, numeric(1), na.rm = TRUE)
})
We can now either return the original (initial) TIC (which is not available).
tic(be)
## [1] NA NA NA
Or calculate the TIC based on the actual intensity values.
tic(be, initial = FALSE)
## [1] 2874.6 180.1 147.5
As stated in the general description, MsBackend
implementations can also be
purely read-only resources allowing to just access data, but not to replace
the data. Thus, it is not strictly required to implement these methods, but for
a fully functional backend it is suggested (as much as possible). A backend for
a purely read-only MS data resource might even extend the MsBackendCached
backend defined in the Spectra
package that provides a mechanism to cache
(spectra variable) data in a data.frame
within the object. The
MsBackendMassbankSql
implemented in the MsBackendMassbank
package extends for example this backend and thus allows modifying some spectra
variables without changing the original data in the MassBank SQL database.
spectraData<-
The spectraData<-
method should allow to replace the data within a
backend. The method should take a DataFrame
with the full data as input value
and is expected to replace the full data within the backend, i.e. all
spectra variables as well as peak data. Also, importantly, the number of spectra
before and after calling the spectraData<-
method on an object has to be the
same. For our implementation we can make use of the optional parameter data
that we added to the backendInitialize()
method and that allows to fill a
MsBackendTest
object with the full data.
setReplaceMethod("spectraData", "MsBackendTest", function(object, value) {
if (!inherits(value, "DataFrame"))
stop("'value' is expected to be a 'DataFrame'")
if (length(object) && length(object) != nrow(value))
stop("'value' has to be a 'DataFrame' with ", length(object), " rows")
object <- backendInitialize(MsBackendTest(), data = value)
object
})
To test this new method we extract the full spectra data, add an additional column (spectra variable) and replace the data again.
d <- spectraData(be)
d$new_col <- c("a", "b", "c")
spectraData(be) <- d
be$new_col
## [1] "a" "b" "c"
intensity<-
The intensity<-
method should allow to replace the intensity values of all
spectra in a backend. This method is expected to only replace the values of
the intensities, but must not change the number of intensities (and hence peaks)
of a spectrum (that could be done with the peaksData<-
method that allows to
replace intensity and m/z values at the same time). The value
for the
method should ideally be a NumericList
to ensure that all intensity values are
indeed numeric
. In addition to the method we implement also a simple helper
function that checks for the correct length of value
. Each data replacement
method needs to check for that and this function thus reduces code duplication.
.match_length <- function(x, y) {
if (length(x) != length(y))
stop("Length of 'value' has to match the length of 'object'")
}
setReplaceMethod("intensity", "MsBackendTest", function(object, value) {
.match_length(object, value)
if (!(is.list(value) || inherits(value, "NumericList")))
stop("'value' has to be a list or NumericList")
if (!all(lengths(value) == lengths(mz(object))))
stop("lengths of 'value' has to match the number of peaks per spectrum")
if (!inherits(value, "NumericList"))
value <- NumericList(value, compress = FALSE)
object@intensity <- value
object
})
We could now use this method to replace the intensities in our backend with modified intensities.
intensity(be)
## NumericList of length 3
## [[1]] 123.3 153.6 2354.3 243.4
## [[2]] 100 80.1
## [[3]] 12.3 35.2 100
intensity(be) <- intensity(be) - 10
intensity(be)
## NumericList of length 3
## [[1]] 113.3 143.6 2344.3 233.4
## [[2]] 90 70.1
## [[3]] 2.3 25.2 90
mz<-
The mz<-
method should allow to replace the m/z values of all spectra in a
backend. The implementation can be the same as for the intensity<-
method. m/z values within each spectrum need to be increasingly ordered. We thus
also check that this is the case for the provided m/z values. We take here the
advantage that a efficient is.unsorted()
implementation for NumericList
is
already available, which is faster than e.g. calling
vapply(mz(be), is.unsorted, logical(1))
.
setReplaceMethod("mz", "MsBackendTest", function(object, value) {
.match_length(object, value)
if (!(is.list(value) || inherits(value, "NumericList")))
stop("'value' has to be a list or NumericList")
if (!all(lengths(value) == lengths(mz(object))))
stop("lengths of 'value' has to match the number of peaks per spectrum")
if (!inherits(value, "NumericList"))
value <- NumericList(value, compress = FALSE)
if (any(is.unsorted(value)))
stop("m/z values need to be increasingly sorted within each spectrum")
object@mz <- value
object
})
peaksData<-
The peaksData<-
should allow to replace the peaks data (m/z and intensity
values) of all spectra in a backend. In contrast to the mz<-
and intensity<-
methods this method should also support changing the number of peaks per
spectrum (e.g. due to filtering). Parameter value
has to be a list
of
matrix
objects with columns "mz"
and "intensity"
. The length of this list
has to match the number of spectra in the backend. In the implementation for our
backend class we need to loop over this list to extract the m/z and intensity
values and assign them to the @mz
and @intensity
slots.
setReplaceMethod("peaksData", "MsBackendTest", function(object, value) {
if (!(is.list(value) || inherits(value, "SimpleList")))
stop("'value' has to be a list-like object")
.match_length(object, value)
object@mz <- NumericList(lapply(value, "[", , "mz"), compress = FALSE)
object@intensity <- NumericList(lapply(value, "[", , "intensity"),
compress = FALSE)
validObject(object)
object
})
Using the peaksData<-
method we can now also for example remove peaks.
pd <- peaksData(be)
## Remove the first peak from the first spectrum
pd[[1L]] <- pd[[1L]][-1L, ]
lengths(be)
## [1] 4 2 3
peaksData(be) <- pd
lengths(be)
## [1] 3 2 3
$<-
The $<-
method should allow to replace values for spectra variables or also to
add additional spectra variables to the backend. As with all replacement
methods, the length()
of value
has to match the number of spectra
represented by the backend.
setReplaceMethod("$", "MsBackendTest", function(x, name, value) {
.match_length(x, value)
if (name == "mz") {
mz(x) <- value
} else if (name == "intensity") {
intensity(x) <- value
} else {
x@spectraVars[[name]] <- value
}
.sv_valid_data_type(x@spectraVars, name)
x
})
We can now replace for example existing spectra variables:
msLevel(be)
## [1] 1 2 2
be$msLevel <- c(2L, 1L, 2L)
msLevel(be)
## [1] 2 1 2
Or even add new spectra variables.
be$new_var <- c("a", "b", "c")
be$new_var
## [1] "a" "b" "c"
Replacement methods for all core spectra variables can be implemented similarly.
selectSpectraVariables()
The selectSpectraVariables()
function should allow to reduce the information
within the backend (parameter object
) to the selected spectra variables
(parameter spectraVariables
). This is equivalent to a subset by
columns/variables. For core spectra variables, if not specified by parameter
spectraVariables
, only their values are expected to be removed (since core
spectra variables are expected to be available even if they are not defined
within a backend). The implementation for our backend will remove any columns in
the @spectraVars
data frame not defined in the spectraVariables
parameter. Special care is given to the "mz"
and "intensity"
spectra
variables: if they are not selected, the @mz
and @intensity
slots are
initialized with empty NumericList
(of length matching the number of
spectra). Note also that some backends might throw an error if a spectra
variable required for the backend is removed (such as "dataStorage"
for a
MsBackendMzR
backend, which is required by the backend to allow retrieval of
m/z and intensity values).
setMethod(
"selectSpectraVariables", "MsBackendTest",
function(object, spectraVariables = spectraVariables(object)) {
keep <- colnames(object@spectraVars) %in% spectraVariables
object@spectraVars <- object@spectraVars[, keep, drop = FALSE]
if (!any(spectraVariables == "mz"))
object@mz <- NumericList(vector("list", length(object)),
compress = FALSE)
if (!any(spectraVariables == "intensity"))
object@intensity <- NumericList(vector("list", length(object)),
compress = FALSE)
validObject(object)
object
})
We can now use selectSpectraVariables()
to remove for example the spectra
variable "new_var"
added above.
be2 <- be
be2 <- selectSpectraVariables(be2, c("msLevel", "rtime", "mz",
"intensity", "dataStorage"))
spectraVariables(be2)
## [1] "msLevel" "rtime"
## [3] "acquisitionNum" "scanIndex"
## [5] "mz" "intensity"
## [7] "dataStorage" "dataOrigin"
## [9] "centroided" "smoothed"
## [11] "polarity" "precScanNum"
## [13] "precursorMz" "precursorIntensity"
## [15] "precursorCharge" "collisionEnergy"
## [17] "isolationWindowLowerMz" "isolationWindowTargetMz"
## [19] "isolationWindowUpperMz"
The spectra variable "new_var"
is now no longer be available. Note however
that still all core spectra variables are listed, even if they were not
selected with the spectraVariables
parameter. While these variables (such as
"dataOrigin"
) are still listed by spectraVariables(be2)
, their actual values
have been removed:
dataOrigin(be)
## [1] "<user provided>" "<user provided>" "<user provided>"
dataOrigin(be2)
## [1] NA NA NA
If "mz"
and "intensitity"
are not selected, the m/z and intensity values get
removed.
be2 <- selectSpectraVariables(be2, c("msLevel", "rtime", "dataStorage"))
mz(be2)
## NumericList of length 3
## [[1]] numeric(0)
## [[2]] numeric(0)
## [[3]] numeric(0)
intensity(be2)
## NumericList of length 3
## [[1]] numeric(0)
## [[2]] numeric(0)
## [[3]] numeric(0)
centroided<-
Replace the value for the centroided core spectra variable. The provided data
type must be a logical. We re-use the function .sv_valid_data_type
which
was defined above for backendInitialize()
to check for the correct data type
of core spectra variables.
setReplaceMethod("centroided", "MsBackendTest", function(object, value) {
object@spectraVars[["centroided"]] <- value
.sv_valid_data_type(object@spectraVars, "centroided")
object
})
Alternatively, we could also simply re-use the $<-
replacement method
above. This would make the whole code base for our backend cleaner as replacing
or adding spectra variables would be handled in a single central function.
setReplaceMethod("centroided", "MsBackendTest", function(object, value) {
object$centroided <- value
object
})
centroided(be) <- c(TRUE, FALSE, TRUE)
centroided(be)
## [1] TRUE FALSE TRUE
collisionEnergy<-
Replace the values for the collision energy. Parameter value
has to be of type
numeric
.
setReplaceMethod("collisionEnergy", "MsBackendTest", function(object, value) {
object$collisionEnergy <- value
object
})
collisionEnergy(be) <- c(NA_real_, 20.0, 20.0)
collisionEnergy(be)
## [1] NA 20 20
dataOrigin<-
Replace the values for the data origin spectra variable. Parameter value
has
to be of type character
.
setReplaceMethod("dataOrigin", "MsBackendTest", function(object, value) {
object$dataOrigin <- value
object
})
dataOrigin(be)
## [1] "<user provided>" "<user provided>" "<user provided>"
dataOrigin(be) <- c("unknown", "file a", "file b")
dataOrigin(be)
## [1] "unknown" "file a" "file b"
dataStorage<-
Replace the values for the data storage spectra variable. Parameter value
has
to be of type character
. Since our backend does not really make any use of
this spectra variable, we can accept any character value. For other backends,
that for example need to load data on-the-fly from data files, this spectra
variable could be used to store the name of the data files and hence we would
need to perform some additional checks within this replacement function.
setReplaceMethod("dataStorage", "MsBackendTest", function(object, value) {
object$dataStorage <- value
object
})
dataStorage(be)
## [1] "<memory>" "<memory>" "<memory>"
dataStorage(be) <- c("", "", "")
dataStorage(be)
## [1] "" "" ""
isolationWindowLowerMz<-
Replace the values for the isolation window lower m/z spectra
variable. Parameter value
has to be of type numeric
(NA_real_
missing
values are supported, e.g. for MS1 spectra).
setReplaceMethod(
"isolationWindowLowerMz", "MsBackendTest", function(object, value) {
object$isolationWindowLowerMz <- value
object
})
isolationWindowLowerMz(be) <- c(NA_real_, 245.3, NA_real_)
isolationWindowLowerMz(be)
## [1] NA 245.3 NA
isolationWindowTargetMz<-
Replace the values for the isolation window target m/z spectra
variable. Parameter value
has to be of type numeric
(NA_real_
missing
values are supported, e.g. for MS1 spectra).
setReplaceMethod(
"isolationWindowTargetMz", "MsBackendTest", function(object, value) {
object$isolationWindowTargetMz <- value
object
})
isolationWindowTargetMz(be) <- c(NA_real_, 245.4, NA_real_)
isolationWindowTargetMz(be)
## [1] NA 245.4 NA
isolationWindowUpperMz<-
Replace the values for the isolation window upper m/z spectra
variable. Parameter value
has to be of type numeric
(NA_real_
missing
values are supported, e.g. for MS1 spectra).
setReplaceMethod(
"isolationWindowUpperMz", "MsBackendTest", function(object, value) {
object$isolationWindowUpperMz <- value
object
})
isolationWindowUpperMz(be) <- c(NA_real_, 245.5, NA_real_)
isolationWindowUpperMz(be)
## [1] NA 245.5 NA
msLevel<-
Replace the MS level of spectra in a backend. Parameter value
has to be of
type integer
. Missing values (NA_integer_
) are supported.
setReplaceMethod("msLevel", "MsBackendTest", function(object, value) {
object$msLevel <- value
object
})
msLevel(be)
## [1] 2 1 2
msLevel(be) <- c(1L, 1L, 2L)
msLevel(be)
## [1] 1 1 2
polarity<-
Replace the values for the polarity spectra variables. Parameter value
has to
be of type integer
and should ideally also use the standard encoding 0L
and 1L
for negative and positive polarity (and NA_integer
for
missing). Thus, in our implementation we also make sure the input parameter
contains the expected values (although this is not a strictly required).
setReplaceMethod("polarity", "MsBackendTest", function(object, value) {
if (!all(value %in% c(0, 1, NA)))
stop("'polarity' should be encoded as 0L (negative), 1L (positive) ",
"with missing values being NA_integer_")
object$polarity <- value
object
})
polarity(be) <- c(0L, 0L, 0L)
polarity(be)
## [1] 0 0 0
rtime<-
Replace the retention times for the spectra represented by the
backend. Parameter value
must be of type numeric
. Also, although it is not a
strict requirement, retention times should ideally be ordered increasingly per
sample and their unit should be seconds.
setReplaceMethod("rtime", "MsBackendTest", function(object, value) {
object$rtime <- value
object
})
rtime(be)
## [1] 1.2 1.3 1.4
rtime(be) <- rtime(be) + 2
rtime(be)
## [1] 3.2 3.3 3.4
smoothed<-
Replace the spectra variable smoothed that indicates whether some data
smoothing operation was performed on the spectra. Parameter value
must be of
type logical
.
setReplaceMethod("smoothed", "MsBackendTest", function(object, value) {
object$smoothed <- value
object
})
smoothed(be) <- rep(TRUE, 3)
smoothed(be)
## [1] TRUE TRUE TRUE
spectraNames<-
Replace the names of individual spectras within the backend. Same as for
names
, colnames
or rownames
, spectraNames
are expected to be of type
character
. In our backend implementation we store the spectra names into the
rownames
of the @spectraVars
data frame.
setReplaceMethod("spectraNames", "MsBackendTest", function(object, value) {
rownames(object@spectraVars) <- value
object
})
spectraNames(be) <- c("a", "b", "c")
spectraNames(be)
## [1] "a" "b" "c"
Default implementations for these methods are available for MsBackend
classes, thus these methods don’t have to be implemented for each new
backend. For some backends, depending on how the data is represented or accessed
within it, different implementations might however be more efficient.
backendBpparam()
The backendBpparam()
method is supposed to evaluate whether a provided (or the
default) parallel processing setup is supported by the backend. Backends that
do not support parallel processing should return SerialParam()
instead.
The default implementation is shown below.
setMethod("backendBpparam", signature = "MsBackend",
function(object, BPPARAM = bpparam()) {
## Return SerialParam() instead to disable parallel processing
BPPARAM
})
backendParallelFactor()
The backendParallelFactor()
allows a backend to suggest a preferred way how
the backend could be split for parallel processing. See also the notes on
parallel processing above for more information. The default implementation
returns factor()
(i.e. a factor
of length 0) hence not suggesting any
splitting:
setMethod("backendParallelFactor", "MsBackend", function(object, ...) {
factor()
})
backendRequiredSpectraVariables()
The backendRequiredSpectraVariables()
method can be implemented if a backend
needs specific spectra variables to work. The default implementation is:
setMethod("backendRequiredSpectraVariables", "MsBackend",
function(object, ...) {
character()
})
The implementation for MsBackendMzR
returns c("dataStorage", "scanIndex")
as
the backend needs these two spectra variables to load the MS data on-the-fly
from the original data files.
dropNaSpectraVariables()
The dropNaSpectraVariables()
is supposed to allow removing all spectra
variables from a data set (storage) that contain only missing values (i.e. where
the value of a spectra variable for each spectrum is NA
). This function is
intended to reduce memory requirements of backends such as the MsBackendMzR
that load values from all core spectra variables from the original data files,
even if their values are only NA
. Removing these missing values from the
backend can hence reduce the size in memory of a backend without data loss
(because methods extracting core spectra variables are supposed to always return
NA
values even if no data is available for them - in such cases the NA
values are supposed to be created on-the-fly.
The default implementation is shown below.
setMethod("dropNaSpectraVariables", "MsBackend", function(object) {
svs <- spectraVariables(object)
svs <- svs[!(svs %in% c("mz", "intensity"))]
spd <- spectraData(object, columns = svs)
keep <- !vapply1l(spd, function(z) all(is.na(z)))
selectSpectraVariables(object, c(svs[keep], "mz", "intensity"))
})
isReadOnly()
isReadOnly()
is expected to return a logical(1)
with either TRUE
or
FALSE
indicating whether the backend supports replacing data or not. The
default implementation is shown below.
setMethod("isReadOnly", "MsBackend", function(object) {
object@readonly
})
peaksVariables()
The peaksVariables()
is expected to return a character
vector with the names
of the peaks variables (i.e. information and properties of individual mass
peaks) available in the backend. The default implementation for MsBackend
returns by default c("mz", "intensity")
. This method should only be
implemented for backends that (eventually) also provide additional peaks
variables. The default implementation is shown below.
setMethod("peaksVariables", "MsBackend", function(object) {
c("mz", "intensity")
})
uniqueMsLevels()
This method should return the unique MS level(s) of all spectra within the backend. The default implementation is shown below.
setMethod("uniqueMsLevels", "MsBackend", function(object, ...) {
unique(msLevel(object))
})
This method thus retrieves first the MS levels of all spectra and then calls
unique()
on them. Database-based backends might avoid such an eventually heavy
operation by selecting the unique MS levels directly using an SQL call.
precursorMz<-
Replace the values for the precursor m/z spectra
variable. Parameter value
has to be of type numeric
(NA_real_
missing
values are supported, e.g. for MS1 spectra). The default implementation uses the
$<-
method:
setReplaceMethod("precursorMz", "MsBackend", function(object, ..., value) {
object$precursorMz <- value
object
})
ionCount()
The ionCount()
method should return a numeric
(length equal to the number of
spectra represented by the backend) with the sum of all intensities within each
spectrum. For empty spectra NA_real_
should be returned. The method below is
the default implementation of the method.
setMethod("ionCount", "MsBackend", function(object) {
vapply1d(intensity(object), sum, na.rm = TRUE)
})
isCentroided()
This method should return the information for each spectrum whether it is
centroided. In contrast to the centroided()
method a heuristic approach is
used. The default implementation is shown below.
setMethod("isCentroided", "MsBackend", function(object, ...) {
vapply1l(peaksData(object), .peaks_is_centroided)
})
reset()
This is a special method that backends may implement or support, but don’t
necessary have to. This method will be called by the reset,Spectra
method and
is supposed to restore the data to its original state. The default
implementation for MsBackend
shown below simply returns the backend as-is. The
MsBackendSql
backend from the MsBackendSql package in contrast
re-initializes the data using the data from the database.
setMethod("reset", "MsBackend", function(object) {
object
})
export()
This method should export the data from a MsBackend
. The method is called by
the export,Spectra
method that passes itself as a second argument to the
function. The export,MsBackend
implementation is thus expected to take a
Spectra
object as second argument from which all data should be taken and
exported. Implementation of this method is optional. The implementation of the
method for the MsBackendMzR
backend is shown below.
setMethod("export", "MsBackendMzR", function(object, x, file = tempfile(),
format = c("mzML", "mzXML"),
copy = FALSE,
BPPARAM = bpparam()) {
l <- length(x)
file <- sanitize_file_name(file)
if (length(file) == 1)
file <- rep_len(file, l)
if (length(file) != l)
stop("Parameter 'file' has to be either of length 1 or ",
length(x), ", i.e. 'length(x)'.", call. = FALSE)
f <- factor(file, levels = unique(file))
tmp <- bpmapply(.write_ms_data_mzR, split(x, f), levels(f),
MoreArgs = list(format = format, copy = copy),
BPPARAM = BPPARAM)
})
See alternatively also the MsBackendMgf package for an
implementation for the MsBackendMgf
backend.
split()
The split()
method should allow to split a MsBackend
into a list
of
MsBackend
objects. The default implementation is shown below.
setMethod("split", "MsBackend", function(x, f, drop = FALSE, ...) {
split.default(x, f, drop = drop, ...)
})
supportsSetBackend()
Whether a MsBackend
supports the setBackend()
method that allows to change
the backend of a Spectra
object from one to another backend. To support
setBackend()
the backend needs to have a parameter data
in its
backendInitialize()
method that allows it to be initialized with a DataFrame
containing the full spectra data. The default implementation is shown below.
setMethod("supportsSetBackend", "MsBackend", function(object, ...) {
!isReadOnly(object)
})
filterDataOrigin()
The filter*
methods are expected to take a MsBackend
and to subset it based
on some criteria. While also the [
method could be used to perform such subset
operation, these methods might allow more efficient ways to subset the data
e.g. by performing the operation within a database with a dedicated SQL call. A
default implementation is available for every filter function and thus a method
needs only to be implemented if the data storage/representation within a backend
would allow a more efficient operation.
All filter methods are expected to return the subset backend (i.e. an instance of the same backend class with the same, or less spectra).
The filterDataOrigin()
should subset the backend to spectra with their
dataOrigin
spectra variable matching the values provided with the dataOrigin
parameter. The default implementation for MsBackend
is shown below.
setMethod("filterDataOrigin", "MsBackend",
function(object, dataOrigin = character()) {
if (length(dataOrigin)) {
object <- object[dataOrigin(object) %in% dataOrigin]
if (is.unsorted(dataOrigin))
object[order(match(dataOrigin(object), dataOrigin))]
else object
} else object
})
filterDataStorage()
Similar to the filterDataOrigin()
, the filterDataStorage()
should subset a
backend to spectra with their dataStorage
spectra variable matching the values
provided with the dataStorage
parameter.
setMethod("filterDataStorage", "MsBackend",
function(object, dataStorage = character()) {
if (length(dataStorage)) {
object <- object[dataStorage(object) %in% dataStorage]
if (is.unsorted(dataStorage))
object[order(match(dataStorage(object), dataStorage))]
else object
} else object
})
filterEmptySpectra()
The filterEmptySpectra()
should remove all empty spectra (i.e. spectra
without any mass peaks) from the backend. The method is expected to return the
subset backend. The default implementation for MsBackend
is shown below.
setMethod("filterEmptySpectra", "MsBackend", function(object, ...) {
if (!length(object)) return(object)
object[as.logical(lengths(object))]
})
filterIsolationWindow()
The filterIsolationWindow()
filters the backend to spectra with the provided
mz
value being within their isolationWindowLowerMz()
and
isolationWindowUpperMz()
. The parameter mz
defining this target m/z is
expected to be a numeric
of length 1. The default implementation for
MsBackend
is shown below.
setMethod("filterIsolationWindow", "MsBackend",
function(object, mz = numeric(), ...) {
if (length(mz)) {
if (length(mz) > 1)
stop("'mz' is expected to be a single m/z value")
keep <- which(isolationWindowLowerMz(object) <= mz &
isolationWindowUpperMz(object) >= mz)
object[keep]
} else object
})
filterMsLevel()
The filterMsLevel()
method is expected to reduce the backend to spectra with
the provided MS level(s). Parameter msLevel
has to be an integer
(any
length). The default implementation for MsBackend
is shown below.
setMethod("filterMsLevel", "MsBackend",
function(object, msLevel = integer()) {
if (length(msLevel)) {
object[msLevel(object) %in% msLevel]
} else object
})
filterPolarity()
The filterPolarity()
method is expected to subset the backend to spectra
matching the provided polarity (or polarities). Parameter polarity
has to be
an integer
(of any length). The default implementation for MsBackend
is
shown below.
setMethod("filterPolarity", "MsBackend",
function(object, polarity = integer()) {
if (length(polarity))
object[polarity(object) %in% polarity]
else object
})
filterPrecursorMzRange()
The filterPrecursorMzRange()
method filters the backend to spectra with their
precursorMz
being between the provided m/z range (parameter mz
). This method
was previously named filterPrecursorMz()
. Parameter mz
is expected to be a
numeric
of length 2 defining the lower and upper limit of this precursor m/z
range. The default implementation for MsBackend
is shown below.
library(MsCoreUtils)
##
## Attaching package: 'MsCoreUtils'
## The following objects are masked from 'package:Spectra':
##
## bin, entropy, smooth
## The following object is masked from 'package:stats':
##
## smooth
setMethod("filterPrecursorMzRange", "MsBackend",
function(object, mz = numeric()) {
if (length(mz)) {
mz <- range(mz)
keep <- which(between(precursorMz(object), mz))
object[keep]
} else object
})
filterPrecursorMzValues()
The filterPrecursorMzValues()
method filters the backend to spectra with their
m/z values matching to the provided m/z value(s). Parameters ppm
and
tolerance
(both expected to be numeric
of length 1) allow to define the
conditions for the relaxed matching. Parameter mz
has to be a numeric
(of
any length). The default implementation for MsBackend
is shown below.
setMethod("filterPrecursorMzValues", "MsBackend",
function(object, mz = numeric(), ppm = 20, tolerance = 0) {
if (length(mz)) {
object[.values_match_mz(precursorMz(object), mz = mz,
ppm = ppm, tolerance = tolerance)]
} else object
})
The .values_match_mz
function used by this function is defined as:
.values_match_mz <- function(x, mz, ppm = 20, tolerance = 0) {
o <- order(x, na.last = NA)
cmn <- common(x[o], sort(mz), tolerance = tolerance, ppm = ppm,
duplicates = "keep", .check = FALSE)
sort(o[cmn])
}
filterPrecursorCharge()
The filterPrecursorCharge()
method filters the backend to spectra with
matching precursor charge. Parameter z
defining the requested precursor charge
has to be an integer
(of any length). The default implementation for
MsBackend
is shown below.
setMethod("filterPrecursorCharge", "MsBackend",
function(object, z = integer()) {
if (length(z)) {
keep <- which(precursorCharge(object) %in% z)
object[keep]
} else object
})
filterPrecursorScan()
The filterPrecursorScan()
method filters the backend to parent (e.g. MS1) and
children scans (e.g. MS2) of acquisition number acquisitionNum
. Parameter f
defines how the backend should be split (by default by original data file) to
avoid selecting spectra from different samples/files. The default implementation
for MsBackend
is shown below.
setMethod("filterPrecursorScan", "MsBackend",
function(object, acquisitionNum = integer(), f = dataOrigin(object)) {
if (length(acquisitionNum) && length(f)) {
if (!is.factor(f))
f <- factor(f, exclude = character())
keep <- unsplit(lapply(split(object, f = f), function(z, an) {
.filterSpectraHierarchy(acquisitionNum(z),
precScanNum(z),
an)
}, an = acquisitionNum), f = f)
object[keep]
} else object
})
filterRt()
The filterRt()
method filters the backend to spectra with their retention time
being between the provided rt range. Parameter rt
is expected
to be a numeric
of length 2 defining the lower and upper bound of this
range. Parameter msLevel.
(note the .
in the name of the parameter!) can be
optionally used to restrict the filtering to the selected MS levels (i.e. the RT
filter is only applied to spectra of the selected MS levels and all spectra with
a different MS level are returned as well). The default implementation for
MsBackend
is shown below.
setMethod("filterRt", "MsBackend",
function(object, rt = numeric(), msLevel. = uniqueMsLevels(object)) {
if (length(rt)) {
rt <- range(rt)
sel_ms <- msLevel(object) %in% msLevel.
sel_rt <- between(rtime(object), rt) & sel_ms
object[sel_rt | !sel_ms]
} else object
})
In this tutorial we implemented a simple in-memory MsBackend
from
scratch. For many real-life situation it might however be better to extend some
of the pre-defined backend classes from the Spectra
package to avoid
duplicating functionality. A good starting point might be the MsBackendMemory
backend for any in-memory data representation, or the MsBackendCached
for
backends that retrieve data from inherently read-only resources (such as
database connection or raw data files) but still would need to support adding
spectra variables or changing values of spectra variables. Similarly, if the
only purpose of a backend is to import or export data in a specific format, the
MsBackendMemory
might be extended and a single method (backendInitialize()
)
would need to be implemented for the new class: this new backendInitialize()
would then call the code to import the data from the new file format and store
it within the available slots of the MsBackendMemory
object. Examples would be
the backends provided by the MsBackendMgf
and MsBackendMsp classes.
The Spectra
package provides a set of unit tests that allow to check a backend
for compliance with MsBackend
. Below we load this test suite and call the
tests. The tests will be performed on a variable be
in the current workspace
(which in our case is an instance of our MsBackendTest
class).
library(testthat)
test_suite <- system.file("test_backends", "test_MsBackend",
package = "Spectra")
test_dir(test_suite, stop_on_failure = TRUE)
sessionInfo()
## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] MsCoreUtils_1.19.0 IRanges_2.41.2 Spectra_1.17.5
## [4] BiocParallel_1.41.0 S4Vectors_0.45.2 BiocGenerics_0.53.3
## [7] generics_0.1.3 BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] cli_3.6.3 knitr_1.49 rlang_1.1.4
## [4] xfun_0.50 ProtGenerics_1.39.2 clue_0.3-66
## [7] jsonlite_1.8.9 htmltools_0.5.8.1 sass_0.4.9
## [10] rmarkdown_2.29 evaluate_1.0.3 jquerylib_0.1.4
## [13] MASS_7.3-64 fastmap_1.2.0 yaml_2.3.10
## [16] lifecycle_1.0.4 bookdown_0.42 BiocManager_1.30.25
## [19] cluster_2.1.8 compiler_4.5.0 codetools_0.2-20
## [22] fs_1.6.5 MetaboCoreUtils_1.15.0 digest_0.6.37
## [25] R6_2.5.1 parallel_4.5.0 bslib_0.8.0
## [28] tools_4.5.0 cachem_1.1.0