estiParamSingle
dmSingle
plotGene
estiParamTwoGroups
dmTwoGroups
mist
(Methylation Inference for Single-cell along Trajectory) is an R package for differential methylation (DM) analysis of single-cell DNA methylation (scDNAm) data. The package employs a Bayesian approach to model methylation changes along pseudotime and estimates developmental-stage-specific biological variations. It supports both single-group and two-group analyses, enabling users to identify genomic features exhibiting temporal changes in methylation levels or different methylation patterns between groups.
This vignette demonstrates how to use mist
for:
1. Single-group analysis.
2. Two-group analysis.
To install the latest version of mist
, run the following commands:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
# Install mist from GitHub
BiocManager::install("https://github.com/dxd429/mist")
From Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("mist")
To view the package vignette in HTML format, run the following lines in R:
library(mist)
vignette("mist")
In this section, we will estimate parameters and perform differential methylation analysis using single-group data.
Here we load the example data from GSE121708.
library(mist)
library(SingleCellExperiment)
# Load sample scDNAm data
Dat_sce <- readRDS(system.file("extdata", "small_sampleData_sce.rds", package = "mist"))
estiParamSingle
# Estimate parameters for single-group
Dat_sce <- estiParamSingle(
Dat_sce = Dat_sce,
Dat_name = "Methy_level_group1",
ptime_name = "pseudotime"
)
# Check the output
head(rowData(Dat_sce)$mist_pars)
## Beta_0 Beta_1 Beta_2 Beta_3 Beta_4
## ENSMUSG00000000001 1.262857 -0.82570332 0.89383567 0.38510549 -0.19217520
## ENSMUSG00000000003 1.622052 1.41981016 3.75355224 -2.49211873 -2.99933414
## ENSMUSG00000000028 1.299436 -0.02152701 0.08056626 0.03691574 0.01987437
## ENSMUSG00000000037 1.051256 -2.95245765 8.18448693 -3.03664622 -2.15036790
## ENSMUSG00000000049 1.031172 -0.06726572 0.08582297 0.07263554 0.07443740
## Sigma2_1 Sigma2_2 Sigma2_3 Sigma2_4
## ENSMUSG00000000001 5.986163 12.640717 3.517811 1.909103
## ENSMUSG00000000003 25.525006 5.033066 6.250292 9.664823
## ENSMUSG00000000028 8.220065 7.519973 2.856204 2.323349
## ENSMUSG00000000037 8.722130 14.250900 7.438585 2.224646
## ENSMUSG00000000049 6.166812 9.835495 3.535402 1.262893
dmSingle
# Perform differential methylation analysis for the single-group
Dat_sce <- dmSingle(Dat_sce)
# View the top genomic features with drastic methylation changes
head(rowData(Dat_sce)$mist_int)
## ENSMUSG00000000037 ENSMUSG00000000003 ENSMUSG00000000001 ENSMUSG00000000049
## 0.044579925 0.033251354 0.015868666 0.007449015
## ENSMUSG00000000028
## 0.004671754
plotGene
# Produce scatterplot with fitted curve of a specific gene
library(ggplot2)
plotGene(Dat_sce = Dat_sce,
Dat_name = "Methy_level_group1",
ptime_name = "pseudotime",
gene_name = "ENSMUSG00000000037")
In this section, we will estimate parameters and perform DM analysis using data from two phenotypic groups.
# Load two-group scDNAm data
Dat_sce <- readRDS(system.file("extdata", "small_sampleData_sce.rds", package = "mist"))
estiParamTwoGroups
# Estimate parameters for both groups
Dat_sce <- estiParamTwo(
Dat_sce = Dat_sce,
Dat_name_g1 = "Methy_level_group1",
Dat_name_g2 = "Methy_level_group2",
ptime_name_g1 = "pseudotime",
ptime_name_g2 = "pseudotime_g2"
)
# Check the output
head(rowData(Dat_sce)$mist_pars_group1, n = 3)
## Beta_0 Beta_1 Beta_2 Beta_3 Beta_4
## ENSMUSG00000000001 1.259949 -0.68095332 0.75093242 0.30069231 -0.14511948
## ENSMUSG00000000003 1.608136 1.74889594 3.42319369 -2.45517532 -3.08373867
## ENSMUSG00000000028 1.300544 -0.01443848 0.07967227 0.03416459 0.01082773
## Sigma2_1 Sigma2_2 Sigma2_3 Sigma2_4
## ENSMUSG00000000001 5.634544 14.498278 3.532108 1.705306
## ENSMUSG00000000003 25.004417 3.700018 6.667944 9.987166
## ENSMUSG00000000028 8.005642 6.835942 2.872354 2.264894
head(rowData(Dat_sce)$mist_pars_group2, n = 3)
## Beta_0 Beta_1 Beta_2 Beta_3 Beta_4
## ENSMUSG00000000001 1.8895202 -2.9927836 16.46334 -20.5952085 6.9936294
## ENSMUSG00000000003 -0.8169146 -0.7723547 2.05888 -0.3357485 -0.8569916
## ENSMUSG00000000028 2.3281356 -5.2038293 24.72615 -32.4925459 13.0296047
## Sigma2_1 Sigma2_2 Sigma2_3 Sigma2_4
## ENSMUSG00000000001 5.289114 6.574531 3.880439 1.339768
## ENSMUSG00000000003 7.116410 11.432390 4.337887 3.086491
## ENSMUSG00000000028 10.827256 5.851526 4.218941 3.052746
dmTwoGroups
# Perform DM analysis to compare the two groups
Dat_sce <- dmTwoGroups(Dat_sce)
# View the top genomic features with different temporal patterns between groups
head(rowData(Dat_sce)$mist_int_2group)
## ENSMUSG00000000037 ENSMUSG00000000003 ENSMUSG00000000001 ENSMUSG00000000028
## 0.054991089 0.032006806 0.028626331 0.016534433
## ENSMUSG00000000049
## 0.008731698
mist
provides a comprehensive suite of tools for analyzing scDNAm data along pseudotime, whether you are working with a single group or comparing two phenotypic groups. With the combination of Bayesian modeling and differential methylation analysis, mist
is a powerful tool for identifying significant genomic features in scDNAm data.
## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] ggplot2_3.5.1 SingleCellExperiment_1.29.1
## [3] SummarizedExperiment_1.37.0 Biobase_2.67.0
## [5] GenomicRanges_1.59.1 GenomeInfoDb_1.43.2
## [7] IRanges_2.41.2 S4Vectors_0.45.2
## [9] BiocGenerics_0.53.3 generics_0.1.3
## [11] MatrixGenerics_1.19.1 matrixStats_1.5.0
## [13] mist_0.99.17 BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 farver_2.1.2 dplyr_1.1.4
## [4] Biostrings_2.75.3 bitops_1.0-9 fastmap_1.2.0
## [7] RCurl_1.98-1.16 GenomicAlignments_1.43.0 XML_3.99-0.18
## [10] digest_0.6.37 lifecycle_1.0.4 survival_3.8-3
## [13] magrittr_2.0.3 compiler_4.5.0 rlang_1.1.4
## [16] sass_0.4.9 tools_4.5.0 yaml_2.3.10
## [19] rtracklayer_1.67.0 knitr_1.49 labeling_0.4.3
## [22] S4Arrays_1.7.1 curl_6.1.0 DelayedArray_0.33.3
## [25] abind_1.4-8 BiocParallel_1.41.0 withr_3.0.2
## [28] grid_4.5.0 colorspace_2.1-1 scales_1.3.0
## [31] MASS_7.3-64 mcmc_0.9-8 tinytex_0.54
## [34] cli_3.6.3 mvtnorm_1.3-3 rmarkdown_2.29
## [37] crayon_1.5.3 httr_1.4.7 rjson_0.2.23
## [40] cachem_1.1.0 splines_4.5.0 parallel_4.5.0
## [43] BiocManager_1.30.25 XVector_0.47.2 restfulr_0.0.15
## [46] vctrs_0.6.5 Matrix_1.7-1 jsonlite_1.8.9
## [49] SparseM_1.84-2 carData_3.0-5 bookdown_0.42
## [52] car_3.1-3 MCMCpack_1.7-1 Formula_1.2-5
## [55] magick_2.8.5 jquerylib_0.1.4 snow_0.4-4
## [58] glue_1.8.0 codetools_0.2-20 gtable_0.3.6
## [61] BiocIO_1.17.1 UCSC.utils_1.3.1 munsell_0.5.1
## [64] tibble_3.2.1 pillar_1.10.1 htmltools_0.5.8.1
## [67] quantreg_5.99.1 GenomeInfoDbData_1.2.13 R6_2.5.1
## [70] evaluate_1.0.3 lattice_0.22-6 Rsamtools_2.23.1
## [73] bslib_0.8.0 MatrixModels_0.5-3 Rcpp_1.0.14
## [76] coda_0.19-4.1 SparseArray_1.7.3 xfun_0.50
## [79] pkgconfig_2.0.3