The iModMixData
package provides example datasets for the iModMix
package.
These datasets are preprocessed and ready to use for testing and demonstrating the iModMix workflows.
The datasets include:
These datasets allow users to explore correlation networks and test reproducible analysis pipelines.
The package provides functions to access datasets stored in ExperimentHub.
## see ?iModMixData and browseVignettes('iModMixData') for documentation
## loading from cache
## A1BG NAT2 ADA CDH2 AKT3
## A1BG NA 0 0 0.00000000 0.00000000
## NAT2 0 NA 0 0.00000000 0.00000000
## ADA 0 0 NA 0.00000000 0.00000000
## CDH2 0 0 0 NA -0.01663876
## AKT3 0 0 0 -0.01663876 NA
## [1] 17240 17240
The PartialCorGenes dataset contains genes as rows and samples as columns. Each entry represents a partial correlation value of a gene with other genes, adjusted for covariates. Data were preprocessed using load_data() (filtering low-variance features, KNN imputation, scaling) and partial correlations were calculated using partial_cors().
This dataset can be used to explore gene correlation networks and for demonstrating iModMix workflows.
## see ?iModMixData and browseVignettes('iModMixData') for documentation
## loading from cache
## neg_00001 neg_00002 neg_00003 neg_00004 neg_00005
## neg_00001 NA 0 0 0 0
## neg_00002 0 NA 0 0 0
## neg_00003 0 0 NA 0 0
## neg_00004 0 0 0 NA 0
## neg_00005 0 0 0 0 NA
## [1] 6733 6733
The PartialCorMetabolites dataset contains metabolites as rows and samples as columns. Partial correlations can be used to study metabolic networks or integrate with other omics datasets.
## see ?iModMixData and browseVignettes('iModMixData') for documentation
## loading from cache
## 395 396 6678 6906 5643
## 395 NA 0 0.00000000 0.00000000 0.00000000
## 396 0 NA 0.00000000 0.00000000 0.00000000
## 6678 0 0 NA -0.04620583 0.00000000
## 6906 0 0 -0.04620583 NA -0.09714395
## 5643 0 0 0.00000000 -0.09714395 NA
## [1] 7205 7205
The PartialCorProt dataset contains proteins as rows and samples as columns. Users can explore protein correlations or use it in multi-omics analyses.
Suggested Uses
## R version 4.5.1 (2025-06-13)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] iModMixData_0.99.6
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.3 sass_0.4.10 generics_0.1.4
## [4] BiocVersion_3.22.0 RSQLite_2.4.3 digest_0.6.37
## [7] magrittr_2.0.3 evaluate_1.0.5 fastmap_1.2.0
## [10] blob_1.2.4 AnnotationHub_3.99.6 jsonlite_2.0.0
## [13] AnnotationDbi_1.71.1 DBI_1.2.3 BiocManager_1.30.26
## [16] httr_1.4.7 purrr_1.1.0 Biostrings_2.77.2
## [19] httr2_1.2.1 jquerylib_0.1.4 cli_3.6.5
## [22] crayon_1.5.3 rlang_1.1.6 XVector_0.49.0
## [25] dbplyr_2.5.0 Biobase_2.69.0 bit64_4.6.0-1
## [28] withr_3.0.2 cachem_1.1.0 yaml_2.3.10
## [31] tools_4.5.1 memoise_2.0.1 dplyr_1.1.4
## [34] filelock_1.0.3 ExperimentHub_2.99.5 BiocGenerics_0.55.1
## [37] curl_7.0.0 vctrs_0.6.5 R6_2.6.1
## [40] png_0.1-8 stats4_4.5.1 BiocFileCache_2.99.6
## [43] lifecycle_1.0.4 Seqinfo_0.99.2 KEGGREST_1.49.1
## [46] S4Vectors_0.47.0 IRanges_2.43.0 bit_4.6.0
## [49] pkgconfig_2.0.3 pillar_1.11.0 bslib_0.9.0
## [52] glue_1.8.0 xfun_0.53 tibble_3.3.0
## [55] tidyselect_1.2.1 knitr_1.50 htmltools_0.5.8.1
## [58] rmarkdown_2.29 compiler_4.5.1