
iPAC: identifcation of Protein Amino acid

Mutations

Gregory Ryslik

Yale University

gregory.ryslik@yale.edu

Hongyu Zhao

Yale University

hongyu.zhao@yale.edu

April 15, 2025

Abstract

The iPAC package provides a novel tool to identify somatic mutation
clustering of amino acids while taking into account their three dimen-
sional structure. Currently, iPAC maps the protein's amino acids into a
one dimensional space while preserving, as best as possible, the three di-
mensional local neighbor relationships. Mutation clusters are then found
by considering if pairwise mutations are closer together than expected by
chance alone via the the Nonrandom Mutation Clustering (NMC) algo-
rithm [Ye et al., 2010]. Finally, the clustering results are mapped back
onto the original protein and reported back to the user. A paper detail-
ing this methodology and results is currently in preparation. Additional

methodologies based on di�erent algorithms will be added in the future.

1 Introduction

Recently, there have been signi�cant pharmacological advances in treating on-
congenic driver mutations [Croce, 2008]. Several methods that rely on amino
acid mutational clusters have been developed in order to identify these muta-
tions. One of the most recent methods was presented by Ye et al. [2010]. Their
algorithm identi�es mutation clusters by calculating whether pairwise mutations
are closer on the the line than expected by chance alone when assuming that
each amino acid has an equal probability of mutation. As their algorithm relies
on considering the protein in linear form, it can potentially exclude clusters
that are close together in 3D space but far apart in 1D space. This package is
speci�cally designed to overcome this limitation.

Currently, this package has two methods that deal with the 3D structure of
the protein: 1) linear and 2) MDS [Borg and Groenen, 1997]. The user should
primarily use MDS as it is more statistically rigorous. We include the linear
method as an example that the general package is itself �exible. Should the
user want to map the protein to 1D space using their own algorithm, they can
thus do so.

1

If users want to contribute to the code base, please contact the author.

2 The NMC Algorithm

The NMC algorithm, proposed by Ye et al. [2010], �nds mutational clusters
when the protein is considered to be a straight line. While the full alogrithm is
presented in their paper, we provide a brief overview here for completeness.

Suppose that the protein was N amino acids long and that each amino acid
had a 1

N probability of mutation. We can then construct order statistics over
many samples as follows:

Figure 1: Three samples of the same protein. An asterisk above a number
indicates a non-synonomous mutation in that sample for that amino acid.

Letting Rk,i = X(k) −X(i), one can calculate if the Pr(Rk,i ≤ r) ≤ α using
well known results about order statistics on the uniform distribution. While
discrete formulas exist for Pr(Rk,i ≤ r), they are often too costly to calculate
when Rk,i > 1. In these cases, we scale the protein onto the interval (0,1) by

calculating Pr(
X(k)−X(i)

N ≤ r) which turns out to equal Pr(Beta(k − i, i+ n−
k + 1) ≤ r). Finally, since this calculation is done for every pair of mutations
in the protein, a multiple comparisons adjustment is performed.

The original NMC algorithm is included in this package via the nmc com-
mand. We provide an example of its use below.

First, we load iPAC and then the mutation matrix. The mutation matrix
is a matrix of 0's and 1's where each column represents an amino acid in the
protein and each row represents a sample (or a mutation). Thus, the entry for
row i column j, represents the ith sample (or mutation) and the jth amino acid.

Code Example 1: Running the NMC algorithm

> library(iPAC)

> #For more information on the mutations matrix,

> #type ?KRAS.Mutations after executing the line below.

> data(KRAS.Mutations)

> nmc(KRAS.Mutations, alpha = 0.05, multtest = "Bonferroni")

2

cluster_size start end number p_value

V12 2 12 13 131 1.979447e-235

V12 1 12 12 100 6.486735e-188

V12 11 12 22 132 3.220145e-145

V12 12 12 23 133 6.524053e-142

V12 50 12 61 138 4.338908e-65

V13 1 13 13 31 2.732914e-39

V12 106 12 117 139 2.341227e-23

V12 135 12 146 149 1.356584e-20

V13 10 13 22 32 4.487362e-12

V13 11 13 23 33 1.279256e-11

V146 1 146 146 10 1.918440e-08

The results from Code Example 1 show all the statistically signi�cant clusters
found, including the size of the cluster, the start and end positions and the
number of mutations in that cluster.

3 Remapping Algorithm

3.1 Matching the Mutation and Position Information

Before we can run the 3D clustering algorithm while, we �rst need to come up
with an alignment between the mutational information provided by a source
such as COSMIC [Forbes et al., 2008] and the positional information provided
by a source such as the PDB [Berman et al., 2000]. Such an alignment is nec-
essary because mutational information is typically provided on the �canonical"
amino acid numbering which often di�ers from the numbering used in the PDB
database. Thus amino acid #i from the PDB database might not be amino acid
#i from the mutational database.

To solve this problem, we consider the mutational database to contain the
�canonical" ordering of the protein. We then attempt to map the structural
information to the canonical ordering and create a new matrix of residues, their
canonical counts, and their positions in 3D space. If successful, we then have
a relational structure between the two databases allowing us to refer to amino
acid #i where i represents the same amino acid in both databases.

We have created two methods that allow one to construct such a matrix:
1)get.Positions and 2)get.AlignedPositions.

The �rst method, get.Positions attemps to create the position matrix di-
rectly from the CIF �le in the PDB database. It returns a list of several items,
the �rst of which is $Positions, which must later be passed to the ClusterFind
method. Due to the complexity of CIF �les, get.Positions currently works on
approximately 70% of the structures in the PDB database.

The second method, get.AlignedPositions performs a pairwise alignment
algorithm to align the canonical protein ordering with the XYZ positions in
the PDB. Since get.AlignedPositions runs an alignment algorithm, the ordering
might not be perfect and we recommend the user to verify the results. However,

3

from our testing, the alignment procedure works quite well. Furthermore, since
get.AlignedPositions does not have to consider as many aspects of the CIF �le,
it is more robust and often works when get.Positions fails.

Let us �rst consider the get.Positions function. We will consider three exam-
ples, one for KRAS protein and two for the PIK3CA protein. For each example,
we need to input the location of the CIF �le (this holds the structural informa-
tion), the location of the FASTA �le (this holds the canonical protein sequence)
and the sidechain that we want to use from the CIF �le.

As the entire position sequence is too long to print, we �rst save the result
and then print the �rst 10 rows of the position matrix. The remaining elements
of the result are printed in full.

Code Example 2: Extracting positions using the get.Positions function

> library(iPAC)

> CIF<-"https://files.rcsb.org/view/3GFT.cif"

> Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"

> KRAS.Positions<-get.Positions(CIF, Fasta, "A")

> names(KRAS.Positions)

[1] "Positions" "External.Mismatch" "PDB.Mismatch"

[4] "Result"

> KRAS.Positions$Positions[1:10,]

Residue Can.Count SideChain XCoord YCoord ZCoord

1 MET 1 A 62.935 97.579 30.223

2 THR 2 A 63.155 95.525 27.079

3 GLU 3 A 65.289 96.895 24.308

4 TYR 4 A 64.899 96.220 20.615

5 LYS 5 A 67.593 96.715 18.023

6 LEU 6 A 65.898 97.863 14.816

7 VAL 7 A 67.664 98.557 11.533

8 VAL 8 A 66.263 100.550 8.617

9 VAL 9 A 67.484 99.500 5.194

10 GLY 10 A 66.575 100.328 1.605

> KRAS.Positions$External.Mismatch

PDB.Residue Canonical.Residue Canonical.Num

1 H Q 61

> KRAS.Positions$PDB.Mismatch

PDB.Residue Canonical.Residue Canonical.Num Remark

19 H Q 61 SEE REMARK 999

> KRAS.Positions$Result

4

[1] "OK"

Observe that the �nal element in Code Example 2 is �OK". That is because
the only mismatched residue (at position 61), was documented in the CIF �le
as well. Thus it is considered a �reconciled" mismatch. It is up to the user to
decide if they want to include it in the position sequence that is passed on to
the ClusterFind method or to remove it.

Code Example 3: Final example of the get.Positions function

> CIF <- "https://files.rcsb.org/view/2RD0.cif"

> Fasta <- "https://www.uniprot.org/uniprot/P42336.fasta"

> PIK3CAV2.Positions <- get.Positions(CIF, Fasta, "A")

> names(PIK3CAV2.Positions)

[1] "Positions" "External.Mismatch" "PDB.Mismatch"

[4] "Result"

> PIK3CAV2.Positions$Positions[1:10,]

Residue Can.Count SideChain XCoord YCoord ZCoord

1 GLY 8 A 88.344 61.306 112.918

2 GLU 9 A 90.119 58.543 111.029

3 LEU 10 A 92.954 56.400 109.709

4 TRP 11 A 93.105 53.251 107.542

5 GLY 12 A 91.616 50.221 109.372

6 ILE 13 A 90.825 52.285 112.474

7 HIS 14 A 87.540 54.192 112.953

8 LEU 15 A 88.806 56.633 115.544

9 MET 16 A 92.435 57.520 116.178

10 PRO 17 A 93.481 57.378 119.852

> PIK3CAV2.Positions$External.Mismatch

NULL

> PIK3CAV2.Positions$PDB.Mismatch

NULL

> PIK3CAV2.Positions$Result

[1] "OK"

Observe that the �nal result in Code Example 3 is �OK". Here we use
a di�erent �le location for the canonical sequence � the UNIPROT database.
Here, the canonical sequence is slightly di�erent and matches up exactly to the
extracted positions. As there is only 1 isoform listed on UNIPROT for PIK3CA
we suggest using the same source for both the mutational and canonical position

5

information. For example, if your mutation data was obtained from COSMIC,
you should use COSMIC to get the canonical protein sequence.

Let us now consider the get.AlignedPositions function. This function auto-
matically drops positions that do not match up.

Code Example 4: Extracting positions using the get.AlignedPositions function

> CIF<- "https://files.rcsb.org/view/2RD0.cif"

> Fasta <- "https://www.uniprot.org/uniprot/P42336.fasta"

> PIK3CAV3.Positions<-get.AlignedPositions(CIF,Fasta , "A")

> names(PIK3CAV3.Positions)

[1] "Positions" "Diff.Count" "Diff.Positions" "Alignment.Result"

[5] "Result"

> PIK3CAV3.Positions$Positions[1:10,]

Residue Can.Count SideChain XCoord YCoord ZCoord

14 GLY 8 A 88.344 61.306 112.918

15 GLU 9 A 90.119 58.543 111.029

16 LEU 10 A 92.954 56.400 109.709

17 TRP 11 A 93.105 53.251 107.542

18 GLY 12 A 91.616 50.221 109.372

19 ILE 13 A 90.825 52.285 112.474

20 HIS 14 A 87.540 54.192 112.953

21 LEU 15 A 88.806 56.633 115.544

22 MET 16 A 92.435 57.520 116.178

23 PRO 17 A 93.481 57.378 119.852

> PIK3CAV3.Positions$External.Mismatch

NULL

> PIK3CAV3.Positions$PDB.Mismatch

NULL

> PIK3CAV3.Positions$Result

[1] "OK"

Both get.AlignedPositions and get.Positions are still in beta and are provided
to the user for convenience only. Changes by the PDB or COSMIC to their �le
structure might result in errors and it is up to the user to ensure the correct
data is supplied to the ClusterFind function.

6

3.2 Finding Clusters in 3D Space

Now that we have the positional data, we can �nd the mutational clusters while
taking into account the 3D protein structure. We begin by slecting a method
to map the protein down to a 1D space.

The �rst method, �linear", �xes a speci�ed point (x0, y0, z0) and then calcu-
lates the distance from each amino acid to that point. The amino acids are then
rearranged in order from the shortest distance to the longest distance. The sec-
ond method, �MDS", uses Multidimensional Scaling [Borg and Groenen, 1997]
to map the protein to a 1D space. We strongly encourage the user to employ the
MDS method as it is more statistically rigorous. The linear method is provided
as an example to show how other mapping paradigms might be implemented.

A diagram of either the MDS or linear mapping can be displayed when
the ClusterFind method is run. As the mapping algorithms are di�erent, the
mapping images created are di�erent as well. The linear method will generate
an image of the distances from (x0, y0, z0) to each amino acid. These distance
will be drawn as dotted green lines from each amino acid to the �xed point.
Conversely, the MDS methodology will create lines from each amino acid to the
x-axis which will mark where on the line the amino acid is positioned.

We begin by �rst running the algorithm on KRAS using the MDS method
followed by the linear method. For a full list of all the possible parameters,
simply type `?ClusterFind' after loading the iPAC library.

Code Example 5: Running the ClusterFind method with a MDS mapping

> #Extract the data from a CIF file and match it up with the canonical protein sequence.

> #Here we use the 3GFT structure from the PDB, which corresponds to the KRAS protein.

> CIF<-"https://files.rcsb.org/view/3GFT.cif"

> Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"

> KRAS.Positions<-get.Positions(CIF,Fasta, "A")

> #Load the mutational data for KRAS. Here the mutational data was obtained from the

> #COSMIC database (version 58).

> data(KRAS.Mutations)

> #Identify and report the clusters.

> ClusterFind(mutation.data=KRAS.Mutations,

+ position.data=KRAS.Positions$Positions,

+ create.map = "Y", Show.Graph = "Y",

+ Graph.Title = "MDS Mapping",

+ method = "MDS")

[1] "Running Remapped"

[1] "Running Full"

[1] "Running Culled"

$Remapped

cluster_size start end number p_value

7

V136 1 12 12 100 8.932390e-183

V136 2 12 13 131 3.908116e-165

V121 49 13 61 38 3.097954e-124

V124 134 13 146 49 1.017093e-122

V136 106 12 117 139 1.362730e-119

V121 57 61 117 6 3.016259e-106

V124 30 117 146 11 1.666182e-102

V124 135 12 146 149 3.813215e-90

V121 50 12 61 138 2.682445e-87

V93 10 13 22 32 3.434148e-73

V93 96 22 117 8 1.140497e-65

V73 11 13 23 33 1.429105e-53

V73 95 23 117 7 4.204875e-48

V93 11 12 22 132 3.398568e-39

V142 1 13 13 31 8.571798e-38

V73 12 12 23 133 1.963564e-23

V142 105 13 117 39 4.563510e-12

V124 1 146 146 10 3.897757e-08

V121 86 61 146 16 6.115605e-07

$OriginalCulled

cluster_size start end number p_value

V12 2 12 13 131 9.453887e-229

V12 1 12 12 100 7.630495e-183

V12 11 12 22 132 1.554973e-138

V12 12 12 23 133 3.526333e-135

V12 50 12 61 138 2.824800e-58

V13 1 13 13 31 8.857871e-38

V12 106 12 117 139 4.538089e-17

V12 135 12 146 149 3.853241e-13

V13 10 13 22 32 8.603544e-11

V13 11 13 23 33 2.553752e-10

V146 1 146 146 10 5.331155e-08

$Original

cluster_size start end number p_value

V12 2 12 13 131 1.979447e-235

V12 1 12 12 100 6.486735e-188

V12 11 12 22 132 3.220145e-145

V12 12 12 23 133 6.524053e-142

V12 50 12 61 138 4.338908e-65

V13 1 13 13 31 2.732914e-39

V12 106 12 117 139 2.341227e-23

V12 135 12 146 149 1.356584e-20

V13 10 13 22 32 4.487362e-12

V13 11 13 23 33 1.279256e-11

8

V146 1 146 146 10 1.918440e-08

$MissingPositions

LHS RHS

[1,] 168 188

MDS Mapping

45 50 55 60 65 70 75 80 85

−
10

 0
 1

0
 2

0
 3

0
 4

0

 80

 90

100

110

120

x−axis

y−
ax

isz−
ax

is

Code Example 6: Running the ClusterFind method with a Linear mapping

> #Extract the data from a CIF file and match it up with the canonical protein sequence.

> #Here we use the 3GFT structure from the PDB, which corresponds to the KRAS protein.

> CIF<-"https://files.rcsb.org/view/3GFT.cif"

> Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"

> KRAS.Positions<-get.Positions(CIF,Fasta, "A")

> #Load the mutational data for KRAS. Here the mutational data was obtained from the

> #COSMIC database (version 58).

> data(KRAS.Mutations)

> #Identify and report the clusters.

> ClusterFind(mutation.data=KRAS.Mutations,

+ position.data=KRAS.Positions$Positions,

+ create.map = "Y", Show.Graph = "Y",

+ Graph.Title = "Linear Mapping",

+ method = "Linear")

9

[1] "Running Remapped"

[1] "Running Full"

[1] "Running Culled"

$Remapped

cluster_size start end number p_value

V90 1 12 12 100 8.862875e-183

V90 2 12 13 131 2.234056e-175

V90 135 12 146 149 2.965106e-158

V90 50 12 61 138 1.092881e-149

V90 11 12 22 132 9.127863e-90

V66 57 61 117 6 3.393497e-89

V90 12 12 23 133 3.393497e-89

V66 30 117 146 11 2.804316e-86

V66 105 13 117 39 5.838579e-79

V66 96 22 117 8 8.125462e-61

V66 95 23 117 7 2.427091e-60

V66 106 12 117 139 2.047918e-48

V95 1 13 13 31 8.857871e-38

V95 134 13 146 49 1.438417e-26

V95 49 13 61 38 9.252899e-22

V100 1 146 146 10 3.897757e-08

V100 86 61 146 16 1.607373e-05

V95 11 13 23 33 8.412719e-04

V95 10 13 22 32 8.663956e-04

$OriginalCulled

cluster_size start end number p_value

V12 2 12 13 131 9.453887e-229

V12 1 12 12 100 7.630495e-183

V12 11 12 22 132 1.554973e-138

V12 12 12 23 133 3.526333e-135

V12 50 12 61 138 2.824800e-58

V13 1 13 13 31 8.857871e-38

V12 106 12 117 139 4.538089e-17

V12 135 12 146 149 3.853241e-13

V13 10 13 22 32 8.603544e-11

V13 11 13 23 33 2.553752e-10

V146 1 146 146 10 5.331155e-08

$Original

cluster_size start end number p_value

V12 2 12 13 131 1.979447e-235

V12 1 12 12 100 6.486735e-188

V12 11 12 22 132 3.220145e-145

V12 12 12 23 133 6.524053e-142

V12 50 12 61 138 4.338908e-65

10

V13 1 13 13 31 2.732914e-39

V12 106 12 117 139 2.341227e-23

V12 135 12 146 149 1.356584e-20

V13 10 13 22 32 4.487362e-12

V13 11 13 23 33 1.279256e-11

V146 1 146 146 10 1.918440e-08

$MissingPositions

LHS RHS

[1,] 168 188

Linear Mapping

45 50 55 60 65 70 75 80 85

−
10

 0
 1

0
 2

0
 3

0
 4

0

 80

 90

100

110

120

x−axis

y−
ax

isz−
ax

is

As can be seen from Code Examples 5 and 6 above, the ClusterFind method
returns a list of four elements. The �rst element, $Remapped, displays all the
clusters found while taking into account the 3D structure of the protein by utiliz-
ing either the linear or MDS methodology. The next element, $OriginalCulled,
displays all the clusters found using the original NMC algorithm after removing
all the amino acids for which we do not have (x, y, z) positions. The $Origi-
nal element displays all the clusters found using the NMC algorithm without
removing the amino acids for which we do not have 3D positional information.

If the user wants to compare the results generated when taking protein
structure into account versus those when protein structure is ignored, it is rec-
ommended that the user compare the matrices in $Remapped versus $Original-
Culled. In this way, the user is considering the di�erences that arise strictly

11

from the protein structure as the amino acids with missing 3D positions have
been removed prior to the analysis.

Finally, the $MissingPositions element displays a matrix of all the amino
acids for which we had mutational data but for which we did not have positional
data. For instance, in Code Example 5, the mutation data matrix had 188
columns while we were able to extract positional information only for amino
acids 1-167. Furthermore, amino acid 61 was excluded from the �nal position
matrix when the get.AlignedPositions function was run as the amino acid listed
in the CIF �le did not match the canonical sequence in the FASTA �le. As
such, the $MissingPositions element has a matrix of 2 rows as follows:

$MissingPositions

LHS RHS

[1,] 61 61

[2,] 168 188

References

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne. The protein data bank. Nucleic Acids Research,
28(1):235�242, January 2000. ISSN 13624962. doi: 10.1093/nar/28.1.235.
URL www.pdb.org.

Ingwer Borg and Patrick J. F Groenen. Modern multidimensional scaling
: theory and applications. Springer, New York, 1997. ISBN 0387948457
9780387948454.

Carlo M Croce. Oncogenes and cancer. The New England Journal of Medicine,
358(5):502�511, January 2008. ISSN 1533-4406. doi: 10.1056/NEJMra072367.
URL http://www.ncbi.nlm.nih.gov/pubmed/18234754. PMID: 18234754.

S A Forbes, G Bhamra, S Bamford, E Dawson, C Kok, J Clements, A Men-
zies, J W Teague, P A Futreal, and M R Stratton. The catalogue of so-
matic mutations in cancer (COSMIC). Current Protocols in Human Genetics
/ Editorial Board, Jonathan L. Haines ... [et Al.], Chapter 10:Unit 10.11,
April 2008. ISSN 1934-8258. doi: 10.1002/0471142905.hg1011s57. URL
http://www.ncbi.nlm.nih.gov/pubmed/18428421. PMID: 18428421.

Jingjing Ye, Adam Pavlicek, Elizabeth A Lunney, Paul A Rejto, and Chi-Hse
Teng. Statistical method on nonrandom clustering with application to somatic
mutations in cancer. 11(1):11, 2010. ISSN 1471-2105. doi: 10.1186/1471-2105-
11-11. URL http://www.biomedcentral.com/1471-2105/11/11.

12

