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1 Introduction
Cross-validation and other methods like the bootstrap can be ‘embarrassingly
parallel’. Embarrassingly parallel means that the same calculation is repeated
independently for different data sets. One way to decrease the execution time
of embarrassingly parallel computations is to use a cluster of computers. Each
node in the cluster performs part of the computation, dividing the execution
time by 1 over the number of nodes in the cluster.

This document illustrates how clusters can perform cross-validation calcula-
tions, using the xval method from the MLInterfaces package. The document
starts with a brief overview of what a cluster computation might look like, with
some essential details swept ‘under the rug’; this is the ‘end-user’ experience.
Delving deeper into the steps required for this experience is the ‘R programmer’
experience. This section outlines the implementation required (not provided
in MLInterfaces!) for clustered computing, the likely performance gains, and
directions for developing more effective parallelization strategies. The section
concludes with a summary of steps taken to make xval more amenable to clus-
tered evaluation; these may be useful guides for exposing other functions to
parallelization.

2 Overview – the ‘end user’ experience
A non-clustered cross-validation might involve the following R commands, taken
from the xval documentation examples:

> library(MLInterfaces)
> library(golubEsets)
> data(Golub_Merge)
> smallG <- Golub_Merge[200:250,]

The first three statements load the MLInterfaces package and a data set. The
next line extracts a portion of the data set for use in the example. We then
perform a “leave one out” (LOO) cross-validation, and summarize the results in
a table:
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> lk1 <- MLearn(ALL.AML~., smallG, knnI(k=1), xvalSpec("LOO"))

[1] "ALL.AML"

> confuMat(lk1)

predicted
given ALL AML

ALL 37 10
AML 10 15

A clustered version of the same calculation requires that the user have a com-
puter cluster available for R to use. The cluster has software libraries installed
to allow communication between cluster nodes. Common software packages in-
clude MPI and PVM. R also requires packages that allow communication between
R and the cluster software. Available packages include Rmpi and rpvm; usually
one installs the package corresponding to the cluster library available on the
system. Both Rmpi and rpvm provide a fairly ‘low-level’ interface to the clus-
ters. A better starting point adds the package snow as another layer on top of
Rmpi or pvm. snow makes it easy to start and stop clusters, and provides a
uniform interface to key cluster functions.

Assuming a functioning cluster with appropriate R packages, and with one
caveat, the clustered cross-validation might start as before. . .

> library(MLInterfaces)
> library(golubEsets)
> smallG <- Golub_Merge[200:250,]

Then load snow , start the cluster (e.g., with 8 nodes), and load MLInterfaces
on each node. . .

> library(snow)
> cl <- makeCluster(8, "MPI")
> clusterEvalQ(cl, library(MLInterfaces))

Finally, perform the calculation across the cluster. . . FOR THIS TO WORK
WE WILL HAVE TO EXTEND xvalSpec TO DEAL WITH makeCluster OB-
JECTS.

> lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod="LOO",
+ group=as.integer(0), cluster = cl)
> table(lk1,smallG$ALL.AML)

Notice that the only change to the actual xval call is the inclusion of the cluster
= cl argument. Easy!
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3 Caveats – the ‘R programmer’ experience
NOTE THAT THIS MATERIAL HAS TO BE UPDATED TO DEAL WITH
THE MLearn/learnerSchema ARCHITECTURE THAT PREDATED THIS MA-
TERIAL.

Now the caveat. Someone has to tell xval how to do the calculation in
clustered mode. This is the job of the generic function xvalLoop. We’ll build
up to a workable solution in this section.

Take a peak at the code inside the xval method (e.g., typing getMethods(xval)
at the R command prompt). You will see xvalLoop appearing near the top, in
a line reading xvalLoop <- xvalLoop(cluster). The function xvalLoop is
a generic function, and it is called with the argument cluster. Here’s the
definition of the default method of xvalLoop function:

> setMethod("xvalLoop",
+ signature( cluster = "ANY" ),
+ function( cluster, ... ) lapply )

This code is executed when cluster = NULL (the default, when no cluster
argument is provided). By default, then, the xvalLoop function returns the
lapply function. The value of the variable xvalLoop (i.e., on the left of
xvalLoop <- xvalLoop(cluster) is then lapply. A bit confusing, but hope-
fully not too confusing.

Look further into the xval code. You’ll see xvalLoop appearing again,
toward the base of the method, as out <- xvalLoop( 1:n, xvalidator, ...
). Since the value of xvalLoop is lapply, this is the same as out <- lapply(
1:n, xvalidator, ... ).

We would like our clustered version of xval to behave differently, specifically
to use an lapply-like function that takes advantage of the computer cluster. We
do this by writing a method of xvalLoop that is specific to our type of cluster.
Suppose, as in the example above, we have an MPI cluster created with snow .
Some reading of the snow documentation leads to the parLapply function. This
behaves just like lapply, but distributes the tasks over cluster nodes. In an ideal
world, we would be able to write

> setOldClass( "spawnedMPIcluster" )
> setMethod("xvalLoop",
+ signature( cluster = "spawnedMPIcluster" ),
+ function( cluster, ... ) parLapply )

Suppose we provided the argument cluster = cl to the xval function. Af-
ter xvalLoop <- xvalLoop(cluster), the value of the variable xvalLoop is
parLapply. Later in xval, we would execute the equivalent of out <- parLapply(
1:n, xvalidator, ... ). If only it were that easy!

There are two problems with the approach developed so far. The first is that
the arguments of parLapply are different from those of lapply. Specifically,
the first argument of parLapply is the cluster.
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Here is one solution to this problem. Create a ‘wrapper’ for parLapply inside
the xvalLoop method for spawnedMPIcluster that hides the cluster argument.
Return the wrapper function, rather than parLapply:

> setOldClass( "spawnedMPIcluster" )
> setMethod("xvalLoop",
+ signature( cluster = "spawnedMPIcluster" ),
+ function( cluster, ... ) {
+ relapply <- function(X, FUN, ...) {
+ parLapply( cluster, X, FUN, ... )
+ }
+ relapply
+ })

Back in xval, the value of the variable xvalLoop is now relapply. The crucial
call later in xval will be out <- relapply( 1:n, xvalidator, ... ). The
function relapply is called with the arguments 1:n, xvalidator, and ....
relapply then calls parLapply with the arguments cluster and the other
arguments from the call to relapply. The details of how cluster gets assigned
the correct value involve the lexical scoping rules of R, but what happens is that
cluster takes on the value it had when the xvalLoop method was invoked –
the relapply function remembers the environment in which it was created, and
the environment includes the variable cluster.

And now the second problem. As it stands, only the computer executing
xval knows about the various variables that have been defined, and are needed,
for the cross-validation calls. We have to share these variables with all cluster
nodes contributing to the cross-validation. snow allows us to export variables
from one node to another. This is a slow process, because in snow a new
communication channel is established for each variable. In addition, we would
have to fully understand the xval method to know which variables needed to
be exported under which circumstances.

Here is a solution that makes variable export quick while removing the need
for detailed knowledge of which specific variables are required: bundle all the
‘visible’ variables into an environment, export the environment to each node,
and unpack the environment at the receiving node. This turns out to be a
good solution, because virtually all the visible variables will be needed in the
cross-validation. The implementation of this solution is as follows:

> setMethod("xvalLoop", signature( cluster = "spawnedMPIcluster"),
+ function( cluster, ... ) {
+ clusterExportEnv <- function (cl, env = .GlobalEnv)
+ {
+ unpackEnv <- function(env) {
+ for ( name in ls(env) ) assign(name, get(name, env), .GlobalEnv )
+ NULL
+ }
+ clusterCall(cl, unpackEnv, env)
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+ }
+ relapply <- function(X, FUN, ...) {
+ ## send all visible variables from the parent (i.e., xval) frame
+ clusterExportEnv( cluster, parent.frame(1) )
+ parLapply( cluster, X, FUN, ... )
+ }
+ relapply
+ })

The clusterExportEnv function is responsible for taking variables in an envi-
ronment and sending them and a function to ‘unpack’ the environment to each
node. clusterCall is defined in snow .

While tortuous in development from scratch, the end result and steps for
creating new methods is straight-forward: create an xvalLoop method for a
clustered environment that (a) exports visible variables and (b) implements
and returns a parallelized lapply-like function.

3.1 Performance
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Figure 1: Execution time decreases asymptotically with number of nodes. The
decreasing performance gain is primarily due to communication overhead.
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After all this work, what do we get? Without immediate access to a cluster,
I ran xval on a collection of 64-bit x86 linux computers linked through standard
ethernet switches. There are a variety of users on each node, so they may not
perform equivalently. The code used is

> harness <- function( nodes, reps, data ) {
+ if ( nodes > 1) {
+ cl <- makeCluster(nodes, "MPI")
+ clusterEvalQ(cl, library(MLInterfaces))
+ } else cl <- NULL
+ func <- function(x)
+ res <- xval(data, "ALL.AML", knnB, xvalMethod = "LOO", 0:0, cluster = cl )
+ func() # warm-up
+ tm <- system.time( sapply( 1:reps, func ) )[3]
+ if (nodes > 1) stopCluster(cl)
+ tm
+ }
> res <- sapply( 1:5, harness, 10, smallG )

Figure 1 summarizes timings from 10 replicate calculations of the cross-
validation used above. The details of the results are likely to be quite system-
and problem-dependent. However, a general point emerges.

A basic framework for thinking about total execution time is to recognize
two components: computation, and communication. In an ideal world, com-
putation time and node number are inversely related nodes, tcomp ∝ 1/n.
Communication time depends on how tasks are communicated to nodes. In
snow , communication increases linearly with node number, tcomm ∝ n. The
combination of these times means that there is a node number that minimizes
overall execution time. Results in Figure 1 suggest that the optimum cluster
size for this problem is surprisingly small.

3.2 Improvements
This section sketches two ways to improve execution time. A goal is to develop
this more fully with worked examples.

snow and clusterCall communication scales linearly with node number.
This is because of the way snow implements cluster-wide calls. Specifically,
the ‘master’ node (i.e., the node running R through which interactions occur)
communicates separately with each slave node. Both MPI and PVM allow for
more efficient models of communication, through broadcast operations that
synchronize data across nodes in log n time.

The broadcast approach is likely to be important in large clusters, but in the
example of the previous section the efficiency is not that great. The underlying
problem is the transfer of a large volume of data; actually, the optimum node
number generally decreases as the size of the data set increases. One solution
to this is somewhat counter-intuitive, at least to me. The idea is for all nodes
to independently read in data and execute all code up to the location where
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xvalLoop is used in xval. The ‘slave’ nodes then each execute a portion of
the cross-validations, while the ‘master’ node collates results from the slaves.
At the end of xvalLoop the master has a complete collection of results and
continues on; the slaves have an incomplete set of results, and can be terminated.
The code is counter-intuitive because each node performs seemingly redundant
calculations (the processing up to xvalLoop). Communication times should be
greatly reduced, though, because each communication involves just a short set of
results rather than a potentially very large data set. An assumption is that the
clustered file system will cope well with near-simultaneous requests to initially
read in data.

3.3 Making xval cluster-friendly
The implementation presented above required revision of the xval code. The
structure of the routine is: (1) check on supplied variables; (2) preliminary
set-up; (3) a loop-like call where the ‘work’ of the function occurs; and (4)
processing of the result. Many high-level R routines have a similar structure.
The revisions aimed to more cleanly distinguish the overall structure, and in
particular to isolate and refactor part (3).

A key step in the refactoring was to change a for loop into an lapply-like
function call. The reason that this is so important is that for loops allow side-
effects to seep beyond the loop. Side-effects are much more easily avoided in
a function call. Here is a simple illustration, where the ‘side-effect’ in the for
loop changes the value of x:

> x <- 1:10
> for (i in 1:10) x[i] <- i**2
> x # x has been modified by the for loop

[1] 1 4 9 16 25 36 49 64 81 100

> x <- 1:10
> res <- lapply(1:10, function(i) x[i] <- i**2)
> x # copy of x in lapply modified, not the global x

[1] 1 2 3 4 5 6 7 8 9 10

Avoiding side-effects is particularly important in a cluster, because side-effects
are limited to the node on which the calculation occurs. Usually this is not
what is desired.

A final step in code revision is the hook, xvalLoop, provided for programmer
access. xvalLoop provides a division-of-labor between the xval expert and the
clustered computing expert. The xval expert needs only know that clustered
computers can take advantage of lapply-like code. The clustered computing
expert need know little about xval, just that it has an lapply-like loop to be
exploited. Since xvalLoop is a generic function, the clustered computing expert
can tailor methods to different types of clusters and even different algorithms.
The end user need know little about either xval or clustered computing; they
just provide their cluster as an argument to xval.
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4 Conclusion
This document provides a guide to users wanting to make use of xval on a
computer cluster. It also provides guidance for further parallelization of xval,
and outlines how functions can be written to expose key components to par-
allelization. An emphasis is the division of labor between specialized function
writers, clustered computer experts, and end users.
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