TCGAbiolinks retrieved molecular subtypes information from TCGA samples. The functions PanCancerAtlas_subtypes
and TCGAquery_subtype
can be used to get the information tables.
While the PanCancerAtlas_subtypes
function gives access to a curated table retrieved from synapse (probably with the most updated molecular subtypes) the TCGAquery_subtype
function has the complete table also with sample information retrieved from the TCGA marker papers.
PanCancerAtlas_subtypes
: Curated molecular subtypes.Data and description retrieved from synapse (https://www.synapse.org/#!Synapse:syn8402849)
Synapse has published a single file with all available molecular subtypes that have been described by TCGA (all tumor types and all molecular platforms), which can be accessed using the PanCancerAtlas_subtypes
function as below:
subtypes <- PanCancerAtlas_subtypes()
DT::datatable(
data = subtypes,
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
The columns “Subtype_Selected” was selected as most prominent subtype classification (from the other columns)
All available molecular data based-subtype | Selected subtype | Number of samples | Link to file | Reference | link to paper | |
---|---|---|---|---|---|---|
ACC | mRNA, DNAmeth, protein, miRNA, CNA, COC, C1A.C1B | DNAmeth | 91 | Link | Cancer Cell 2016 | Link |
AML | mRNA and miRNA | mRNA | 187 | Link | NEJM 2013 | Link |
BLCA | mRNA subtypes | mRNA | 129 | Link | Nature 2014 | Link |
BRCA | PAM50 (mRNA) | PAM50 | 1218 | Link | Nature 2012 | Link |
GBM/LGG* | mRNA, DNAmeth, protein, Supervised_DNAmeth | Supervised_DNAmeth | 1122 | Link | Cell 2016 | Link |
Pan-GI (preliminary) ESCA/STAD/COAD/READ | Molecular_Subtype | Molecular_Subtype | 1011 | Link | Cancer Cell 2018 | Link |
HNSC | mRNA, DNAmeth, RPPA, miRNA, CNA, Paradigm | mRNA | 279 | Link (TabS7.2) | Nature 2015 | Link |
KICH | Eosinophilic | Eosinophilic | 66 | Link | Cancer Cell 2014 | Link |
KIRC | mRNA, miRNA | mRNA | 442 | Link | Nature 2013 | Link |
KIRP | mRNA, DNAmeth, protein, miRNA, CNA, COC | COC | 161 | Link | NEJM 2015 | Link |
LIHC (preliminary) | mRNA, DNAmeth, protein, miRNA, CNA, Paradigma, iCluster | iCluster | 196 | Link (Table S1A) | not published | |
LUAD | DNAmeth, iCluster | iCluster | 230 | Link (Table S7) | Nature 2014 | Link |
LUSC | mRNA | mRNA | 178 | Link (Data file S7.5) | Nature 2012 | Link |
OVCA | mRNA | mRNA | 489 | Link | Nature 2011 | Link |
PCPG | mRNA, DNAmeth, protein, miRNA, CNA | mRNA | 178 | tableS2 | Cancer Cell 2017 | Link |
PRAD | mRNA, DNAmeth, protein, miRNA, CNA, icluster, mutation/fusion | mutation/fusion | 333 | Link | Cell 2015 | Link |
SKCM | mRNA, DNAmeth, protein, miRNA, mutation | mutation | 331 | Link (Table S1D) | Cell 2015 | Link |
THCA | mRNA, DNAmeth, protein, miRNA, CNA, histology | mRNA | 496 | Link (Table S2 - Tab1) | Cell 2014 | Link |
UCEC | iCluster, MSI, CNA, mRNA | iCluster - updated according to Pan-Gyne/Pathways groups | 538 | Link (datafile S1.1) | Nature 2013 | Link |
Link | ||||||
UCS (preliminary) | mRNA | mRNA | 57 | Link | not published |
TCGAquery_subtype
: Working with molecular subtypes data.The Cancer Genome Atlas (TCGA) Research Network has reported integrated genome-wide studies of various diseases. We have added some of the subtypes defined by these report in our package:
TCGA dataset | Link | Paper | Journal |
---|---|---|---|
ACC | doi:10.1016/j.ccell.2016.04.002 | Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. | Cancer cell 2016 |
BRCA | https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30119-3 | A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers | Cancer cell 2018 |
BLCA | http://www.cell.com/cell/fulltext/S0092-8674(17)31056-5 | Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer Cell 2017 | |
CHOL | http://www.sciencedirect.com/science/article/pii/S2211124717302140?via%3Dihub | Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles | Cell Reports 2017 |
COAD | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 |
ESCA | https://www.nature.com/articles/nature20805 | Integrated genomic characterization of oesophageal carcinoma | Nature 2017 |
GBM | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 |
HNSC | http://www.nature.com/nature/journal/v517/n7536/abs/nature14129.html | Comprehensive genomic characterization of head and neck squamous cell carcinomas | Nature 2015 |
KICH | http://www.sciencedirect.com/science/article/pii/S1535610814003043 | The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma | Cancer cell 2014 |
KIRC | http://www.nature.com/nature/journal/v499/n7456/abs/nature12222.html | Comprehensive molecular characterization of clear cell renal cell carcinoma | Nature 2013 |
KIRP | http://www.nejm.org/doi/full/10.1056/NEJMoa1505917 | Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma | NEJM 2016 |
LIHC | http://linkinghub.elsevier.com/retrieve/pii/S0092-8674(17)30639-6 | Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma | Cell 2017 |
LGG | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 |
LUAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular profiling of lung adenocarcinoma | Nature 2014 |
LUSC | http://www.nature.com/nature/journal/v489/n7417/abs/nature11404.html | Comprehensive genomic characterization of squamous cell lung cancers | Nature 2012 |
PAAD | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30299-4 | Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma | Cancer Cell 2017 |
PCPG | http://dx.doi.org/10.1016/j.ccell.2017.01.001 | Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma | Cancer cell 2017 |
PRAD | http://www.sciencedirect.com/science/article/pii/S0092867415013392 | The Molecular Taxonomy of Primary Prostate Cancer | Cell 2015 |
READ | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 |
SARC | http://www.cell.com/cell/fulltext/S0092-8674(17)31203-5 | Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas | Cell 2017 |
SKCM | http://www.sciencedirect.com/science/article/pii/S0092867415006340 | Genomic Classification of Cutaneous Melanoma | Cell 2015 |
STAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular characterization of gastric adenocarcinoma | Nature 2013 |
THCA | http://www.sciencedirect.com/science/article/pii/S0092867414012380 | Integrated Genomic Characterization of Papillary Thyroid Carcinoma | Cell 2014 |
UCEC | http://www.nature.com/nature/journal/v497/n7447/abs/nature12113.html | Integrated genomic characterization of endometrial carcinoma | Nature 2013 |
UCS | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30053-3 | Integrated Molecular Characterization of Uterine Carcinosarcoma Cancer | Cell 2017 |
UVM | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30295-7 | Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma | Cancer Cell 2017 |
These subtypes will be automatically added in the summarizedExperiment object through GDCprepare. But you can also use the TCGAquery_subtype
function to retrieve this information.
## lgg subtype information from:doi:10.1016/j.cell.2015.12.028
A subset of the LGG subytpe is shown below:
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] grid stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] maftools_2.22.0 jpeg_0.1-10
## [3] png_0.1-8 DT_0.33
## [5] dplyr_1.1.4 SummarizedExperiment_1.36.0
## [7] Biobase_2.66.0 GenomicRanges_1.58.0
## [9] GenomeInfoDb_1.42.0 IRanges_2.40.0
## [11] S4Vectors_0.44.0 BiocGenerics_0.52.0
## [13] MatrixGenerics_1.18.0 matrixStats_1.4.1
## [15] TCGAbiolinks_2.34.0 testthat_3.2.1.1
##
## loaded via a namespace (and not attached):
## [1] RColorBrewer_1.1-3 rstudioapi_0.17.1
## [3] jsonlite_1.8.9 magrittr_2.0.3
## [5] GenomicFeatures_1.58.0 rmarkdown_2.28
## [7] BiocIO_1.16.0 fs_1.6.4
## [9] zlibbioc_1.52.0 vctrs_0.6.5
## [11] Rsamtools_2.22.0 memoise_2.0.1
## [13] RCurl_1.98-1.16 htmltools_0.5.8.1
## [15] S4Arrays_1.6.0 usethis_3.0.0
## [17] progress_1.2.3 curl_5.2.3
## [19] SparseArray_1.6.0 sass_0.4.9
## [21] bslib_0.8.0 htmlwidgets_1.6.4
## [23] desc_1.4.3 fontawesome_0.5.2
## [25] plyr_1.8.9 httr2_1.0.5
## [27] cachem_1.1.0 GenomicAlignments_1.42.0
## [29] mime_0.12 lifecycle_1.0.4
## [31] pkgconfig_2.0.3 Matrix_1.7-1
## [33] R6_2.5.1 fastmap_1.2.0
## [35] GenomeInfoDbData_1.2.13 shiny_1.9.1
## [37] digest_0.6.37 colorspace_2.1-1
## [39] ShortRead_1.64.0 AnnotationDbi_1.68.0
## [41] ps_1.8.1 rprojroot_2.0.4
## [43] pkgload_1.4.0 crosstalk_1.2.1
## [45] RSQLite_2.3.7 hwriter_1.3.2.1
## [47] filelock_1.0.3 fansi_1.0.6
## [49] httr_1.4.7 abind_1.4-8
## [51] compiler_4.4.1 remotes_2.5.0
## [53] bit64_4.5.2 withr_3.0.2
## [55] downloader_0.4 BiocParallel_1.40.0
## [57] DBI_1.2.3 pkgbuild_1.4.5
## [59] highr_0.11 R.utils_2.12.3
## [61] biomaRt_2.62.0 rappdirs_0.3.3
## [63] DelayedArray_0.32.0 sessioninfo_1.2.2
## [65] rjson_0.2.23 DNAcopy_1.80.0
## [67] tools_4.4.1 chromote_0.3.1
## [69] httpuv_1.6.15 R.oo_1.26.0
## [71] glue_1.8.0 restfulr_0.0.15
## [73] promises_1.3.0 generics_0.1.3
## [75] gtable_0.3.6 tzdb_0.4.0
## [77] R.methodsS3_1.8.2 tidyr_1.3.1
## [79] websocket_1.4.2 data.table_1.16.2
## [81] hms_1.1.3 xml2_1.3.6
## [83] utf8_1.2.4 XVector_0.46.0
## [85] pillar_1.9.0 stringr_1.5.1
## [87] vroom_1.6.5 later_1.3.2
## [89] splines_4.4.1 BiocFileCache_2.14.0
## [91] lattice_0.22-6 deldir_2.0-4
## [93] rtracklayer_1.66.0 aroma.light_3.36.0
## [95] survival_3.7-0 bit_4.5.0
## [97] tidyselect_1.2.1 Biostrings_2.74.0
## [99] miniUI_0.1.1.1 knitr_1.48
## [101] xfun_0.48 devtools_2.4.5
## [103] brio_1.1.5 stringi_1.8.4
## [105] UCSC.utils_1.2.0 yaml_2.3.10
## [107] codetools_0.2-20 TCGAbiolinksGUI.data_1.25.0
## [109] evaluate_1.0.1 interp_1.1-6
## [111] EDASeq_2.40.0 archive_1.1.9
## [113] tibble_3.2.1 BiocManager_1.30.25
## [115] cli_3.6.3 xtable_1.8-4
## [117] munsell_0.5.1 processx_3.8.4
## [119] jquerylib_0.1.4 Rcpp_1.0.13
## [121] dbplyr_2.5.0 parallel_4.4.1
## [123] XML_3.99-0.17 ellipsis_0.3.2
## [125] ggplot2_3.5.1 readr_2.1.5
## [127] blob_1.2.4 prettyunits_1.2.0
## [129] latticeExtra_0.6-30 profvis_0.4.0
## [131] urlchecker_1.0.1 bitops_1.0-9
## [133] pwalign_1.2.0 scales_1.3.0
## [135] purrr_1.0.2 crayon_1.5.3
## [137] BiocStyle_2.34.0 rlang_1.1.4
## [139] KEGGREST_1.46.0 rvest_1.0.4